
GDL Reference Guide

GRAPHISOFT®

Visit the GRAPHISOFT website at https://www.graphisoft.com for local distributor and product availability information.
GDL Reference Guide
Copyright© 2019 by GRAPHISOFT, all rights reserved. Reproduction, paraphrasing or translation without express prior written permission
is strictly prohibited.
Trademarks
ARCHICAD® is a registered trademark and PlotMaker, Virtual Building and GDL are trademarks of GRAPHISOFT. All other trademarks
are the property of their respective holders.

https://www.graphisoft.com

Introduction

GDL Reference Guide iii

Introduction
This manual is a complete reference to the GRAPHISOFT's proprietary scripting language, GDL (Geometric Description Language). The manual is recommended
for those users who wish to expand on the possibilities presented by the construction tools and object libraries in GRAPHISOFT software. It gives a detailed description
of GDL, including syntax definitions, commands, variables, etc.

GDL Reference Guide

GDL Reference Guide iv

Table of Contents
General Overview . 1

Starting Out . 1
Scripting . 1
3D Generation . 8

GDL Syntax . 11
Rules of GDL Syntax . 11
Statements . 11
Line . 11
Label . 11
Characters . 11
Strings . 12
Identifiers . 12
Variables . 12
Parameters . 13
Simple Types . 13
Derived Types . 13
Structured Types . 14
Conventions used in this book . 14

Coordinate Transformations . 16
2D Transformations . 16

ADD2 . 16
MUL2 . 16
ROT2 . 17

3D Transformations . 17
ADDX .. 17
ADDY .. 17
ADDZ .. 17
ADD .. 17
MULX .. 18
MULY .. 18

GDL Reference Guide

GDL Reference Guide v

MULZ .. 18
MUL . 18
ROTX .. 18
ROTY .. 18
ROTZ .. 19
ROT .. 19
XFORM .. 19

Managing the Transformation Stack . 20
DEL . 20
DEL TOP . 20
NTR . 20

3D Shapes . 22
Basic Shapes . 22

BLOCK .. 22
BRICK .. 22
CYLIND .. 23
SPHERE .. 23
ELLIPS . 24
CONE .. 25
PRISM .. 25
PRISM_ . 26
CPRISM_ . 29
CPRISM_{2} . 30
CPRISM_{3} . 31
CPRISM_{4} . 34
BPRISM_ . 34
FPRISM_ . 35
HPRISM_ . 37
SPRISM_ . 38
SPRISM_{2} . 39
SPRISM_{3} . 40
SPRISM_{4} . 41
SLAB . 42

GDL Reference Guide

GDL Reference Guide vi

SLAB_ . 42
CSLAB_ . 43
CWALL_ . 43
BWALL_ . 47
XWALL_ . 49
XWALL_{2} . 51
XWALL_{3} . 52
BEAM .. 55
CROOF_ . 55
CROOF_{2} . 58
CROOF_{3} . 59
CROOF_{4} . 60
MESH .. 60
ARMC .. 62
ARME .. 63
ELBOW .. 64

Planar Shapes in 3D . 65
HOTSPOT .. 65
HOTLINE .. 65
HOTARC .. 66
LIN_ . 66
RECT . 66
POLY .. 66
POLY_ . 67
PLANE .. 68
PLANE_ . 68
CIRCLE . 68
ARC . 69

Shapes Generated from Polylines . 69
EXTRUDE .. 71
PYRAMID .. 74
REVOLVE .. 76
REVOLVE{2} . 81

GDL Reference Guide

GDL Reference Guide vii

REVOLVE{3} . 82
REVOLVE{4} . 84
REVOLVE{5} . 84
RULED .. 84
RULED{2} . 84
RULEDSEGMENTED .. 88
RULEDSEGMENTED{2} . 89
SWEEP . 90
TUBE .. 93
TUBE{2} . 97
TUBEA .. 99
COONS . 102
COONS{2} . 105
MASS . 105
MASS{2} . 108
POLYROOF .. 109
POLYROOF{2} . 114
POLYROOF{3} . 114
POLYROOF{4} . 117
EXTRUDEDSHELL . 117
EXTRUDEDSHELL{2} . 118
EXTRUDEDSHELL{3} . 120
REVOLVEDSHELL . 120
REVOLVEDSHELL{2} . 121
REVOLVEDSHELL{3} . 123
REVOLVEDSHELLANGULAR .. 123
REVOLVEDSHELLANGULAR{2} . 124
REVOLVEDSHELLANGULAR{3} . 124
RULEDSHELL . 125
RULEDSHELL{2} . 127
RULEDSHELL{3} . 130

Elements for Visualization . 130
LIGHT .. 130

GDL Reference Guide

GDL Reference Guide viii

PICTURE .. 135
3D Text Elements . 136

TEXT .. 136
RICHTEXT .. 137

Primitive Elements . 137
VERT . 138
VERT{2} . 138
TEVE .. 139
VECT . 139
EDGE .. 139
PGON .. 140
PGON{2} . 141
PGON{3} . 141
PIPG .. 141
COOR .. 141
COOR{2} . 143
COOR{3} . 144
BODY .. 146
BASE . 149

NURBS Primitive Elements . 150
NURBS Face trimming . 151
NURBS Geometry Commands . 151

NURBSCURVE2D .. 151
NURBSCURVE3D .. 152
NURBSSURFACE .. 153

NURBS Topology Commands . 153
NURBSVERT . 154
NURBSEDGE .. 154
NURBSTRIM .. 155
NURBSTRIMSINGULAR .. 155
NURBSFACE .. 156
NURBSFACE{2} . 157
NURBSLUMP .. 157

GDL Reference Guide

GDL Reference Guide ix

NURBSBODY .. 158
Point Clouds . 158

POINTCLOUD .. 158
Cutting in 3D . 159

CUTPLANE .. 159
CUTPLANE{2} . 159
CUTPLANE{3} . 159
CUTPOLY .. 163
CUTPOLYA .. 165
CUTSHAPE .. 168
CUTFORM .. 168
CUTFORM{2} . 170

Solid Geometry Commands . 170
GROUP - ENDGROUP .. 174
ADDGROUP .. 175
SUBGROUP .. 175
ISECTGROUP .. 175
ISECTLINES . 176
PLACEGROUP .. 176
KILLGROUP .. 176
SWEEPGROUP .. 177
CREATEGROUPWITHMATERIAL . 179

Binary 3D . 179
BINARY .. 179

2D Shapes . 181
Drawing Elements . 181

HOTSPOT2 . 181
HOTLINE2 . 181
HOTARC2 . 182
LINE2 . 182
RECT2 . 182
POLY2 . 182
POLY2_ . 183

GDL Reference Guide

GDL Reference Guide x

POLY2_A . 184
POLY2_B . 185
POLY2_B{2} . 185
POLY2_B{3} . 186
POLY2_B{4} . 186
POLY2_B{5} . 186
POLY2_B{6} . 187
ARC2 . 188
CIRCLE2 . 188
SPLINE2 . 189
SPLINE2A . 190
PICTURE2 . 192
PICTURE2{2} . 192

Text Element . 192
TEXT2 . 192
RICHTEXT2 . 193

Binary 2D . 193
FRAGMENT2 . 193

3D Projections in 2D . 193
PROJECT2 . 193
PROJECT2{2} . 194
PROJECT2{3} . 197
PROJECT2{4} . 198

Drawings in the List . 201
DRAWING2 . 201
DRAWING3 . 201
DRAWING3{2} . 201
DRAWING3{3} . 201

Graphical Editing Using Hotspots . 203
Status Codes . 211

Status Code Syntax . 211
Additional Status Codes . 212

Previous part of the polyline: current position and tangent is defined . 213

GDL Reference Guide

GDL Reference Guide xi

Segment by absolute endpoint . 213
Segment by relative endpoint . 213
Segment by length and direction . 214
Tangential segment by length . 214
Set start point . 215
Close polyline . 215
Set tangent . 215
Set centerpoint . 216
Tangential arc to endpoint . 216
Tangential arc by radius and angle . 217
Arc using centerpoint and point on the final radius . 217
Arc using centerpoint and angle . 218
Full circle using centerpoint and radius . 218

Attributes . 224
Directives . 224

Directives for 3D and 2D Scripts . 224
LET . 224
RADIUS . 224
RESOL . 225
TOLER .. 226
PEN .. 227
LINE_PROPERTY .. 228
[SET] STYLE . 228

Directives Used in 3D Scripts Only . 228
MODEL .. 228
[SET] MATERIAL . 229
[SET] BUILDING_MATERIAL . 230
SECT_FILL . 231
SECT_ATTRS . 231
SECT_ATTRS{2} . 231
SHADOW .. 231

Directives Used in 2D Scripts Only . 233
DRAWINDEX .. 233

GDL Reference Guide

GDL Reference Guide xii

[SET] FILL . 233
[SET] LINE_TYPE . 233

Inline Attribute Definition . 234
Materials . 234

DEFINE MATERIAL . 234
DEFINE MATERIAL BASED_ON .. 236
DEFINE TEXTURE .. 238

Fills . 240
DEFINE FILL . 240
DEFINE FILLA . 243
DEFINE SYMBOL_FILL . 246
DEFINE SOLID_FILL . 247
DEFINE EMPTY_FILL . 247
DEFINE LINEAR_GRADIENT_FILL . 247
DEFINE RADIAL_GRADIENT_FILL . 247
DEFINE TRANSLUCENT_FILL . 247
DEFINE IMAGE_FILL . 248

Line Types . 248
DEFINE LINE_TYPE . 248
DEFINE SYMBOL_LINE .. 249

Text Styles and Text Blocks . 249
DEFINE STYLE . 249
DEFINE STYLE{2} . 250
PARAGRAPH .. 251
TEXTBLOCK .. 252
TEXTBLOCK_ . 253

Additional Data . 253
External file dependence . 254

FILE_DEPENDENCE .. 254
Non-Geometric Scripts . 255

The Properties Script . 255
DATABASE_SET . 255
DESCRIPTOR .. 256

GDL Reference Guide

GDL Reference Guide xiii

REF DESCRIPTOR .. 256
COMPONENT .. 256
REF COMPONENT .. 257
BINARYPROP .. 257
SURFACE3D .. 257
VOLUME3D .. 257
POSITION .. 257
DRAWING .. 258

The Parameter Script . 259
VALUES . 259
VALUES{2} . 260
PARAMETERS . 261
LOCK .. 261
HIDEPARAMETER .. 262

The User Interface Script . 262
UI_DIALOG .. 263
UI_PAGE .. 263
UI_CURRENT_PAGE .. 264
UI_BUTTON .. 264
UI_PICT_BUTTON .. 265
UI_SEPARATOR .. 265
UI_GROUPBOX .. 265
UI_PICT . 266
UI_STYLE . 266
UI_OUTFIELD .. 266
UI_INFIELD .. 267
UI_INFIELD{2} . 267
UI_INFIELD{3} . 268
UI_INFIELD{4} . 268
UI_CUSTOM_POPUP_INFIELD .. 276
UI_CUSTOM_POPUP_INFIELD{2} . 276
UI_RADIOBUTTON .. 279
UI_RADIOBUTTON{2} . 279

GDL Reference Guide

GDL Reference Guide xiv

UI_PICT_RADIOBUTTON .. 280
UI_PICT_RADIOBUTTON{2} . 280
UI_PICT_PUSHCHECKBUTTON .. 280
UI_PICT_PUSHCHECKBUTTON{2} . 280
UI_TEXTSTYLE_INFIELD .. 281
UI_TEXTSTYLE_INFIELD{2} . 281
UI_LISTFIELD .. 282
UI_LISTITEM .. 282
UI_LISTITEM{2} . 283
UI_CUSTOM_POPUP_LISTITEM .. 284
UI_CUSTOM_POPUP_LISTITEM{2} . 285
UI_TOOLTIP . 287
UI_COLORPICKER .. 288
UI_COLORPICKER{2} . 288
UI_SLIDER . 289
UI_SLIDER{2} . 289

The Forward Migration Script . 289
SETMIGRATIONGUID .. 290
STORED_PAR_VALUE .. 291
DELETED_PAR_VALUE .. 291

The Backward Migration Script . 291
NEWPARAMETER .. 293

Expressions and Functions . 294
Expressions . 294

DICT . 294
HASKEY .. 299
REMOVEKEY .. 299
DIM .. 300
VARDIM1 . 301
VARDIM2 . 301
PARVALUE_DESCRIPTION .. 304

Operators . 304
Arithmetical Operators . 304

GDL Reference Guide

GDL Reference Guide xv

Relational Operators . 305
Boolean Operators . 305

Functions . 306
Arithmetical Functions . 306

ABS . 306
CEIL . 306
INT . 306
FRA . 306
ROUND_INT . 306
SGN .. 306
SQR . 306

Circular Functions . 307
ACS . 307
ASN .. 307
ATN .. 307
COS . 307
SIN . 307
TAN .. 307
PI . 307

Transcendental Functions . 308
EXP . 308
LGT . 308
LOG .. 308

Boolean Functions . 308
NOT .. 308

Statistical Functions . 308
MIN .. 308
MAX .. 308
RND .. 309

Bit Functions . 309
BITTEST . 309
BITSET . 309

Special Functions . 309

GDL Reference Guide

GDL Reference Guide xvi

REQ .. 309
REQUEST . 310
IND .. 310
APPLICATION_QUERY .. 311
LIBRARYGLOBAL . 311

String Functions . 311
STR . 311
STR{2} . 312
SPLIT . 315
STW .. 316
STRLEN .. 316
STRSTR . 317
STRSUB . 317
STRTOUPPER . 318
STRTOLOWER .. 318

Control Statements . 319
Flow Control Statements . 319

FOR - TO - NEXT .. 319
DO - WHILE . 320
WHILE - ENDWHILE . 320
REPEAT - UNTIL . 321
IF - GOTO .. 322
IF - THEN - ELSE - ENDIF . 323
GOTO .. 324
GOSUB .. 324
RETURN .. 324
END / EXIT . 325
BREAKPOINT .. 325

Parameter Buffer Manipulation . 325
PUT . 326
GET . 326
USE . 326
NSP . 326

GDL Reference Guide

GDL Reference Guide xvii

Macro Objects . 329
CALL . 329

Output in an Alert Box or Report Window . 331
PRINT . 331

File Operations . 331
OPEN .. 332
INPUT . 332
VARTYPE . 332
OUTPUT .. 332
CLOSE . 333

Using Deterministic Add-Ons . 333
INITADDONSCOPE .. 333
PREPAREFUNCTION .. 333
CALLFUNCTION .. 333
CLOSEADDONSCOPE .. 334

Miscellaneous . 335
Global Variables . 335

Script compatibility . 335
General environment information . 336
Story information . 341
Fly-through information . 341
General element parameters . 343
Object, Lamp, Door, Window, Wall End, Skylight parameters . 344
Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters - available for listing and labels
only . 345
Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only . 345
Opening parameters - available for listing and labels only . 345
Opening symbol parameters . 347
Window, Door and Wall End parameters . 350
Window, Door parameters - available for listing and labels only . 351
Lamp parameters - available for listing and labels only . 352
Marker parameters (Detail, Worksheet and Change Markers) . 352
Label parameters . 353

GDL Reference Guide

GDL Reference Guide xviii

Wall parameters - available for Doors/Windows, listing and labels . 354
Wall parameters - available for listing and labels only . 357
Column parameters - available for listing and labels only . 359
Beam parameters - available for listing and labels only . 365
Slab parameters - available for listing and labels only . 370
Stair component parameters . 373

General stair variables - available for listing and labels . 373
General tread variables - available for listing and labels . 375
General riser variables - available for listing and labels . 376
Stair structure variables - available for listing and labels . 377
Stair Model View Options variables . 377
Stair 2D variables - available for floor plan representation only . 378

Stair grid variables . 379
Stair walking line symbol variables . 382
Stair break mark symbol variables . 384
Rise and Run description variables . 385
Stair draining 2D variables . 385
Stair structure 2D variables - Beam Structures . 387
Stair structure 2D variables - Monolithic Structure . 388
General 2D related variables . 392

Stair 3D variables - available for 3D representation (and connecting viewpoints) only . 395
Stair riser 3D variables . 395
Stair tread 2D-3D variables . 396
Stair structure variables . 399

Railing component parameters . 401
General railing variables - available for listing and labels . 401
Railing 3D variables . 402
Railing 2D variables . 408

Roof parameters - available for skylights, listing and labels . 412
Roof parameters - available for listing and labels only . 415
Fill parameters - available for listing and labels only . 416
Mesh parameters - available for listing and labels only . 417
Curtain Wall component parameters . 418

GDL Reference Guide

GDL Reference Guide xix

Curtain Wall parameters - available for listing and labels only . 420
Curtain Wall Frame parameters . 421

General Curtain Wall Frame variables - available for listing and labels only . 421
Curtain Wall Frame 3D variables . 421

Curtain Wall Panel variables . 423
Curtain Wall Panel parameters - available for listing and labels only . 424
Curtain Wall Junction parameters - available for listing and labels only . 424
Curtain Wall Accessory parameters - available for listing and labels only . 425
Migration parameters - available for migration scripts only . 425
Skylight parameters - available for listing and labels only . 425
Common Parameters for Shells and Roofs - available for listing and labels only . 425
Parameters for Morphs - available for listing and labels only . 430
Free users’ globals . 431
Example usage of global variables . 432
Deprecated Global Variables . 432
Deprecated Beam/Column Global Variables - available for listing and labels only . 433
Deprecated Label Global Variables . 433
Deprecated Curtain Wall Frame Global Variable - available for listing and labels only . 435
Old Global Variables . 435

Fix named optional parameters . 437
Parameters set by ARCHICAD .. 437

Parameters for D/W attributes (available for Door, Window, Label, Listing) . 438
Floor plan display . 438
Direction . 438
Polygonal wall data . 439
Hole position . 439
Anchor data . 439

Parameters for WALL attributes (available for Door, Window, Label, Listing) . 439
Floor plan display . 439
Geometric data . 440

Parameters for COLUMN attributes (available for Label, Listing) . 440
Floor plan display . 441
Geometric data . 442

GDL Reference Guide

GDL Reference Guide xx

Parameters for BEAM attributes (available for Label, Listing) . 442
Floor plan display . 442
Geometric data . 443

Parameters for ROOF attributes (available for Label, Listing) . 444
Floor plan display . 444

Door/Window Marker attributes . 444
Detail/Worksheet Marker attributes . 446
Drawing Title attributes . 446
General running context . 447
Room parameters (available for Zone Stamps) . 448
Stair related parameters . 450

Flight / Landing Side Supported subtypes . 450
Riser Component subtype . 450
Stair 2D Component subtypes . 450

Parameters set/read by ARCHICAD .. 450
Stair related parameters . 450

Structure subtype . 450
Parameters read by ARCHICAD .. 451

Objects on Floor Plan . 451
Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects) . 451

Door/Window objects . 452
Custom Component Template . 453
Stair related parameters . 453

Structure subtype . 453
Flight / Landing Under Supported subtype . 453
Flight Under Supported Cantilever / Landing Cantilever Supported subtypes . 454

Railing related parameters . 454
Railing Panel Component subtype . 454
Railing Rail Component subtype . 454
Railing Post Component subtype . 455
Railing End Component subtype . 456

Parameters for Curtain Wall . 456
Curtain Wall Parameters set and read by ARCHICAD .. 457

GDL Reference Guide

GDL Reference Guide xxi

Curtain Wall Frame parameters . 457
Curtain Wall Parameters set by ARCHICAD .. 457

Curtain Wall Frame parameters . 457
Curtain Wall Panel parameters . 458
Curtain Wall Junction parameters . 458
Curtain Wall Accessory parameters . 458
Curtain Wall Frame Deprecated parameters . 459

Curtain Wall Parameters read by ARCHICAD .. 460
Curtain Wall Panel and Frame parameters . 460
Curtain Wall Frame parameters . 461
Curtain wall panel parameters . 462

Parameters for add-ons . 463
Parameters of Skylight add-on . 463

Hole edge cut manipulation . 463
Parameters of Corner Window add-on . 463

Basic parameters of Corner Window objects . 463
Wall skins data parameters of Corner Window objects (available from ARCHICAD 12) . 464

Parameters of IFC add-on . 464
Common basic parameters of Door and Window objects . 464
Basic parameters of Door objects . 466
Basic parameters of Window objects . 469
Basic parameters of Transport Elements . 472
Basic parameters of Lift objects . 472
Basic parameters of Stair objects . 473
Basic parameters of MEP elements . 475

Parameters for Text Handling . 476
Parameters for Labels . 477

Parameters set or read by ARCHICAD .. 477
Parameters read by ARCHICAD .. 479

Deprecated parameters . 480
Deprecated Beam/Column parameters - available for listing and labels only . 480
Deprecated Zone Stamp parameters . 481

REQUEST Options . 481

GDL Reference Guide

GDL Reference Guide xxii

Request Parameter Script Compatibility . 481
Details of Requests . 487
Profile Requests . 509
Deprecated Requests . 512

Application Query Options . 512
Document feature . 513

View direction . 513
MEP System . 513

Get MEP Systems . 513
Get Domain . 513
Get Contour Pen . 514
Get Fill Pen . 514
Get Background Pen . 514
Get Fill Type . 514
Get Center Line Type . 515
Get Center Line Pen . 515
Get System Material . 515
Get Insulation Material . 515

MEP Modeler . 516
Is Available . 516

MEP Connection Type . 516
Get Connection Types . 516
Get Connection Type Style . 516

MEP Flexible Segment . 517
Start Sectioning . 517
Add Control Point . 517
Add Direction and Width Vector . 517
End Sectioning . 518

MEP Bend . 518
Start Sectioning . 518

Parameter Script . 519
First Occasion in Progress . 519

Tags and Categories . 519

GDL Reference Guide

GDL Reference Guide xxiii

Get Parameter Folder Names . 519
Get Parameter Names . 520
Get Parameters . 520

Library manager . 520
Ies files . 520
User image files . 520

GDL Style Guide . 521
Introduction . 521
Naming Conventions . 521

General rules . 521
Variable names . 521
Capitalization . 523

Expressions . 523
Control flow statements . 524

if - else - endif . 524
for - next, do - while, while - endwhile, repeat - until . 525

Subroutines . 525
Writing comments . 526

Script header . 526
Section divide . 527

Script structure . 529
Bad Solution . 530
Good Solution . 531

Basic Technical Standards . 531
Introduction . 531
Library part format . 532

File extension . 532
Identification . 532

General scripting issues . 535
Numeric types - Precision . 535
Trigonometry functions . 537
GDL warnings . 537
Hotspot and Hotline IDs . 539

GDL Reference Guide

GDL Reference Guide xxiv

Purpose of hotspot/hotline/hotarc identification . 539
Problem of old-school hotspots/hotlines . 539
Correct hotspot/hotline/hotarc scripting . 540

Editable hotspots . 540
Editable hotspot example - Shoe / Shoe-rack . 540

GDL execution contexts . 542
Communicating values with ARCHICAD .. 543

Information flow from ARCHICAD .. 544
Global variables . 544
Fix named optional parameters . 544
Requests and Application Queries . 544
Information coming from the library part . 544

Model View Options, Library Global . 544
Internal Model View Options . 545
Library Global View Options . 545

Script type specific issues . 545
Master script . 545
2D script . 546

Execution context . 546
General recommendation . 546
Defining line and fill properties . 546

3D script . 547
Execution context . 547
General recommendation . 548
Modeling transparent bodies . 548
Texture mapping . 550
Picture elements . 556
Group operations . 557

Parameter script . 558
Execution context . 558
General recommendation . 558
Font type names . 559
Setting limits for array parameters . 559

GDL Reference Guide

GDL Reference Guide xxv

User Interface script . 560
Execution context . 560
General recommendation . 560
Thumbnail control pictures . 560
Tab page handling . 561
Thumbnail controls with dynamic items . 564
Transparent UI pictures . 566
Font sizes on the UI . 566

Forward Migration script . 567
Execution context . 567
General recommendation . 568

Backward Migration script . 569
Execution context . 569
General recommendation . 570

Migration table . 571
Writing macros . 572

Macro return parameters . 572
Advanced parameters all . 572
Faster macro call . 572
Macro call example . 573

Background Conversion Issues . 573
Speed Issues . 574
Windows-Macintosh compatibility . 574

Changing platform with binary libraries . 575
Images and HDPI support in GDL . 575

Doors and Windows . 576
General Guidelines . 576
Positioning . 577
Creation of Door/Window Library Parts . 579

Rectangular Doors/Windows in Straight Walls . 580
3D Related Challenges . 582

Non-Rectangular Doors/Windows in Straight Walls . 582
WALLHOLE .. 582

GDL Reference Guide

GDL Reference Guide xxvi

WALLNICHE .. 585
Rectangular Doors/Windows in Curved Walls . 586
Non-Rectangular Doors/Windows in Curved Walls . 588

2D Related Challenges . 591
Cutting custom wall opening . 591

WALLHOLE2 . 591
WALLHOLE2{2} . 592

Extending the wall polygon . 593
WALLBLOCK2 . 593
WALLBLOCK2{2} . 593
WALLLINE2 . 593
WALLARC2 . 593

GDL Created from the Floor Plan . 594
Keywords . 594

Common Keywords . 594
Reserved Keywords . 597
3D Use Only . 597
2D Use Only . 603
2D and 3D Use . 605
Non-Geometric Scripts . 605

Properties Script . 605
Parameter Script . 606
Interface Script . 606
Forward and Backward Migration Scripts . 608

GDL Data I/O Add-On . 608
Description of Database . 608
Opening a Database . 608
Reading Values from Database . 609
Writing Values into Database . 610
Closing Database . 611

GDL Datetime Add-On . 611
Opening Channel . 611
Reading Information . 613

GDL Reference Guide

GDL Reference Guide xxvii

Closing Channel . 613
GDL File Manager I/O Add-On . 613

Specifying Folder . 613
Getting File/Folder Name . 614
Finishing Folder Scanning . 614

GDL Text I/O Add-On . 615
Opening File . 615
Reading Values . 616
Writing Values . 617
Closing File . 617

Property GDL Add-On . 618
Open property database . 618
Close property database . 619
Input to property database . 619
Output to property database . 622

GDL XML Extension . 622
Opening an XML Document . 623
Reading an XML Document . 624
Modifying an XML Document . 628

Polygon Operations Extension . 632
Opening a channel . 632
Container management . 633

CreateContainer . 633
DeleteContainer . 633
EmptyContainer . 633
SetSourceContainer . 633
SetDestinationContainer . 633

Polygon / polyline management . 633
Array . 633
Dictionary . 634
Store . 634
StorePolyline . 635
StoreDictPolygon . 636

GDL Reference Guide

GDL Reference Guide xxviii

StoreDictPolyline . 636
Dispose . 636

Polygon / polyline operation settings . 636
HalfPlaneParams . 636
OffsetParams . 637
MultipleEdgeOffsetParams . 637
PolylineOffsetVectors . 637

Polygon / polyline operations . 637
+ - / . 638
ClipPolyline . 638
CopyPolygon . 638
Regularize . 638
PolyCut . 639
OffsetEdge . 639
OffsetMultipleEdges . 639
OffsetPolyline . 639
OffsetPolylineWithVectors . 640
ResizeContour . 640
CentreOfGravity . 640

Get resulting polygons / polylines . 640
Array . 640

GetSourcePolygons, GetSourcePolylines . 640
GetDestinationPolygons, GetDestinationPolylines . 640
GetVertices, GetPolylineVertices . 641
GetContourEnds . 641
GetInhEdgeInfos, GetPolylineInhEdgeInfos . 641

Dictionary . 641
GetSourceDictPolygon, GetSourceDictPolyline . 641
GetDestinationDictPolygon, GetDestinationDictPolyline . 642

Closing channel . 642
Autotext Guide . 642

Project info keywords . 642
General . 643

GDL Reference Guide

GDL Reference Guide xxix

Layout autotexts . 644
Drawing autotexts . 644
Reference type autotexts . 644
Marker type autotexts . 645
Change related autotexts . 645
Layout revision related autotexts . 645

New GDL Features in ARCHICAD 23 . 646
New data type: dictionary . 646
New functions in PolyOperations add-on . 646
New tool: Opening . 647
Updated tools: Beam and Column . 647
New Property requests . 648
Diagnostics mode . 648
Command updates and extended versions . 649
IFC4 . 649
New source format with LP_XMLConverter . 650

Index . 651
Syntax Listing of GDL Commands . 651

General Overview

GDL Reference Guide 1

GENERAL OVERVIEW
GDL is a parametric programming language, similar to BASIC. It describes 3D solid objects like doors, windows, furniture, structural
elements, stairs, and the 2D symbols representing them on the floor plan. These objects are called library parts.

STARTING OUT
The needs of your design, your background in programming and your knowledge of descriptive geometry will all probably influence where
you start in GDL.
Do not start practicing GDL with complicated objectives in mind. Rather, try to learn GDL through experimenting step by step with all of its
features to best utilize them to your advantage. Follow the expertise level recommendations below.
If you are familiar with a programming language like BASIC, you can get acquainted with GDL by observing existing scripts. You can also learn
a lot by opening the library parts shipped with your software and taking a look at the 2D and 3D GDL scripts. Additionally, you can save floor
plan elements in GDL format and see the resulting script.
If you are not familiar with BASIC, but have played with construction blocks, you can still find your way in GDL through practice. We advise
trying the simplest commands right away and then checking their effect in the 3D window of the library part.
Several books and materials have been published on GDL and object library development.
• “Object Making with ARCHICAD” is the perfect guide for beginners.
• “Creating GDL Objects” e-Guide gives a basic overview of the object creation methods.
• David Nicholson Cole’s “GDL Cookbook” is the most popular course book for entry level and advanced GDL programmers for a long time.
• A more recent learning material is “GDL Handbook” by Andrew Watson for novice and experienced users as well.
• “GDL Advanced Technical Standards” contains GRAPHISOFT’s official standards for professional library developers; this document

can be downloaded after registration from GRAPHISOFT’s website: https://www.graphisoft.com/support/developer/. For guidelines of basic
development, see the section called “Basic Technical Standards” in this manual.

SCRIPTING
Library Part Structure
Every library part described with GDL has scripts, which are lists of the actual GDL commands that construct the 3D shape and the 2D
symbol. Library parts also have a description for quantity calculations.
Master script commands will be executed before each script.

https://www.graphisoft.com/support/developer/

General Overview

GDL Reference Guide 2

The 2D script contains parametric 2D drawing description. The binary 2D data of the library part (content of the 2D symbol window) can
be referenced using the FRAGMENT2 command. If the 2D script is empty, the binary 2D data will be used to display the library part on
the floor plan.
The 3D script contains a parametric 3D model description. The binary 3D data (which is generated during an import or export operation)
can be referenced using the BINARY command.
The Properties script contains components and descriptors used in element, component and zone lists. The binary properties data described
in the components and descriptors section of the library part can be referenced using the BINARYPROP command. If the properties script
and the master script are empty, the binary properties data will be used during the list process.
The User Interface script allows the user to define input pages that can be used to edit the parameter values in place of the normal parameter list.
In the Parameter script, sets of possible values can be defined for the library part parameters.
The parameter set in the Parameters section are used as defaults in the library part settings when placing the library part on the plan.
In the Forward Migration script you can define the conversion logic which can convert placed instances of older elements.
In the Backward Migration script you can define a backward conversion to an older version of an element.
The Preview picture is displayed in the library part settings dialog box when browsing the active library. It can be referenced by the PICTURE
and PICTURE2 commands from the 3D and 2D script.
ARCHICAD provides a helpful environment to write GDL scripts, with on-the-fly visualization, syntax and error checking.
Analyze, Deconstruct and Simplify
No matter how complex, most objects you wish to create can be broken down into building blocks of simple geometric shapes. Always start
with a simple analysis of the desired object and define all the geometric units that compose it. These building blocks can then be translated into
the vocabulary of the GDL scripting language. If your analysis was accurate, the combination of these entities will form the desired object. To
make the analysis, you need to have a good perception of space and at least a basic knowledge of descriptive geometry.

General Overview

GDL Reference Guide 3

Window representations with different levels of sophistication

To avoid getting discouraged early on in the learning process, start with objects of defined dimensions and take them to their simplest but still
recognizable form. As you become familiar with basic modeling, you can increase the level of sophistication and get closer to the ideal form.
Ideal does not necessarily mean complicated. Depending on the nature of the architectural project, the ideal library part could vary from basic
to refined. The window on the left in the above illustration fits the style of a design visualization perfectly. The window on the right gives a
touch of realism and detail which can be used later in the construction documents phase of the project.
Elaboration

Depending on your purpose, your custom parametric objects may vary in elaboration. Custom objects for internal studio use may be less refined
than the ones for general use or for commercial distribution.
If your symbols have little significance on the floor plan, or if parametric changes do not need to appear in 2D, then you can omit parametric
2D scripts.
Even if parametric changes are intended to be present in 2D, it is not absolutely necessary to write a parametric 2D script. You can perform
parametric modifications in the 3D Script window or use the 3D top view of the modified object as a new symbol and save the modified object
under a new name. Parametric changes to the default values will result in several similar objects derived from the original.

General Overview

GDL Reference Guide 4

The most complex and sophisticated library parts consist of parametric 3D descriptions with corresponding parametric 2D scripts. Any changes
in the settings will affect not only the 3D image of the object, but also its floor plan appearance.
Entry Level
These commands are easy to understand and use. They require no programming knowledge, yet you can create very effective new objects
using only these commands.
Simple Shapes
Shapes are basic geometric units that add up to a complex library part. They are the construction blocks of GDL. You place a shape in the
3D space by writing a command in the GDL script.
A shape command consists of a keyword that defines the shape type and some numeric values or alphabetic parameters that define its dimensions.
The number of values varies by shape.
In the beginning, you can omit using parameters and work with fixed values only.
You can start with the following shape commands:
In 3D:
BLOCK, CYLIND, SPHERE, PRISM
In 2D:
LINE2, RECT2, POLY2, CIRCLE2, ARC2
Coordinate Transformations
Coordinate transformations are like moving your hand to a certain place before placing a construction block. They prepare the position,
orientation and scale of the next shape.

General Overview

GDL Reference Guide 5

L

G

x

y

z

x

y

z

BLOCK 1, 0.5, 0.5
ADDX 1.5
ROTY 30
BLOCK 1, 0.5, 0.5
The 3D window of the library part will optionally show you the home (G = global) and the current (L = local) position of the coordinate
system for any object present.
The simplest coordinate transformations are as follows:
In 3D:
ADDX, ADDY, ADDZ, ROTX, ROTY, ROTZ
In 2D:
ADD2, ROT2
The commands starting with ADD will move the next shape, while the ROT commands will turn it around any of its axes.
Intermediate Level
These commands are a bit more complex, not because they expect you to know programming, but simply because they describe more complex
shapes or more abstract transformations.
In 3D:
ELLIPS, CONE

General Overview

GDL Reference Guide 6

POLY_, LIN_, PLANE, PLANE_
PRISM_, CPRISM_, SLAB, SLAB_, CSLAB_, TEXT
In 2D:
HOTSPOT2, POLY2_, TEXT2, FRAGMENT2
These commands usually require more values to be defined than the simple ones. Some of them require status values to control the visibility
of edges and surfaces.
Coordinate Transformations
In 3D:
On top of the entry level transformations
MULX, MULY, MULZ, ADD, MUL, ROT
In 2D:
On top of the entry level transformations
MUL2
Example:

PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0
ADDZ -1
MUL 0.666667, 0.666667, 1
PRISM 4, 1, 3, 0,
 3, 3,
 -3, 3,
 -3, 0

The transformations starting with MUL will rescale the subsequent shapes by distorting circles into ellipses or spheres into ellipsoids. If used
with negative values, they can be used for mirroring. The commands in the second row affect all three dimensions of space at the same time.

General Overview

GDL Reference Guide 7

Advanced Level
These commands add a new level of complexity either because of their geometric shape, or because they represent GDL as a programming
language.
In 3D:

BPRISM_ BWALL_ CWALL_ XWALL_

CROOF_ FPRISM_ SPRISM_

EXTRUDE PYRAMID REVOLVE RULED

SWEEP TUBE TUBEA COONS

MESH MASS

LIGHT PICTURE

There are shape commands in this group which let you trace a spatial polygon with a base polygon to make smooth curved surfaces. Some
shapes require material references in their parameter list.
By using cutting planes, polygons and shapes, you can generate complex arbitrary shapes out of simple shapes. The corresponding commands
are CUTPLANE, CUTPOLY, CUTPOLYA, CUTSHAPE and CUTEND.
In 2D:
PICTURE2, POLY2_A, SPLINE2, SPLINE2A
Flow Control and Conditional Statements
FOR - TO - NEXT
DO - WHILE, WHILE - ENDWHILE
REPEAT - UNTIL
IF - THEN - ELSE - ENDIF
GOTO, GOSUB
RETURN, END / EXIT
These commands should be familiar to anyone who has ever programmed a computer, but they are basic enough that you can understand
them without prior programming experience.
They let you make repetitive script parts to place several shapes with little scripting, or let you make decisions based on prior calculations.

General Overview

GDL Reference Guide 8

FOR i = 1 TO 5
 PRISM_ 8, 0.05,
 -0.5, 0, 15,
 -0.5, -0.15, 15,
 0.5, -0.15, 15,
 0.5, 0, 15,
 0.45, 0, 15,
 0.45, -0.1, 15,
 -0.45, -0.1, 15,
 -0.45, 0, 15
 ADDZ 0.2
NEXT i

Parameters
At this stage of your expertise, you can replace fixed numeric values with variable names. This makes the object more flexible. These variables
are accessible from the library part’s Settings dialog box while working on the project.
Macro Calls
You are not limited to the standard GDL shapes. Any existing library part may become a GDL shape in its entirety. To place it, you simply call
(refer to) its name and transfer the required parameters to it, just as with standard shape commands.
Expert Level
By the time you have a good understanding of the features and commands outlined above, you will be able to pick up the few remaining
commands that you may need from time to time.

Note
The memory capacity of your computer may limit the file length of your GDL scripts, the depth of macro calls and the number of
transformations.

You will find additional information on the above GDL commands throughout the manual. HTML format help files are also available with
your software, giving a quick overview of the available commands and their parameter structure.

3D GENERATION
3D modeling is based on floating point arithmetics, meaning that there is no limit imposed on the geometric size of the model. Whatever size
it is, it retains the same accuracy down to the smallest details.

General Overview

GDL Reference Guide 9

The 3D model that you finally see on the screen is composed of geometric primitives. These primitives are stored in the memory of your
computer in binary format, and the 3D engine generates them according to the floor plan you created. The metamorphosis between the
architectural floor plan elements and the binary 3D data is called 3D conversion.
The primitives are the following:
• all the vertices of your building components
• all the edges linking the vertices
• all the surface polygons within the edges
Groups of these primitives are kept together as bodies. The bodies make up the 3D model. All of the features of 3D visualization - smooth
surfaces, cast shadows, glossy or transparent materials - are based on this data structure.
The 3D Space
The 3D model is created in three-dimensional space measured by the x, y and z axes of a master coordinate system whose origin is called
the global origin.
In Floor Plan view, you can see the global origin in the lower left corner of the worksheet if you open the program without reading a specific
document. In addition, the global origin defines the zero level of all the stories referred to in a floor plan document.
When you place an object into the design, the floor plan position will define its location along the x and y axes of this master coordinate system.
The location along the z axis can be set in the Object Settings dialog box or directly adjusted when placed in 3D. This location will be the base
and the default position of the local coordinate system of the object. The shapes described in the script will be positioned with reference
to this local coordinate system.
Coordinate Transformations
Every GDL shape is linked to the current position of the local coordinate system. For example, blocks are linked to the origin. The length,
width and height of the block are always measured in a positive direction along the three axes. Thus, the BLOCK command requires only three
parameters defining its dimensions along the axes.
How can you generate a shifted and rotated block? With the parameter structure of the BLOCK there is no way to do this. It does not have
parameters for shift and rotation.
The answer is to move the coordinate system to the correct position before issuing the BLOCK command. With the coordinate transformation
commands, you can pre-define its position and rotation around the axes. These transformations are not applied to the shapes already generated
and are only effective on subsequent shapes.
The GDL Interpreter
When a GDL script is executed, the GDL interpreter engine will detect the location, size, rotation angle, user defined parameters and the
mirrored state of the library part. It will then move the local coordinate system to the right position, ready to receive the GDL commands

General Overview

GDL Reference Guide 10

from the script of the library parts. Every time a command for a basic shape is read by the interpreter, it will generate the geometric primitives
that make up that particular shape.
When the interpreter has finished, the complete binary 3D model will be stored in the memory, and you can perform 3D projections, fly-
through renderings or sun studies on it.
ARCHICAD contains a pre-compiler and an interpreter for GDL. Interpretation of a GDL script uses the pre-compiled code. This feature
increases speed of the analysis. If the GDL script is modified, a new code is generated.
Data structures converted from other file formats (e.g., DXF, Zoom, Alias Wavefront) are stored in a binary 3D section of the library parts.
This section is referenced by the BINARY command from the GDL script.
The GDL Script Analysis
Users have no control over the order in which library parts placed on the floor plan are analyzed. The order of GDL script analysis is based
on the internal data structure; moreover, Undo and Redo operations as well as modifications may influence that order. The only exceptions to
this rule are special GDL scripts of the active library, whose names begin with "MASTER_GDL" or "MASTEREND_GDL".
Scripts whose name begins with "MASTER_GDL" are executed before starting a list process and after loading the active library.
Scripts whose name begins with "MASTEREND_GDL" are executed when the active library is to be changed (Load Libraries, Open a project,
New project, Quit).
These scripts are not executed when you edit library parts. If your library contains one or more such scripts they will all be executed in an
order that is not defined.
MASTER_GDL and MASTEREND_GDL scripts can include attribute definitions, initializations of GDL user global variables, 3D commands
(effective only in the 3D model), value list definitions (see the VALUES command) and GDL extension-specific commands. The attributes
defined in these scripts will be merged into the current attribute set (attributes with same names are not replaced, while attributes originated
from GDL and not edited in the program are always replaced).

GDL Syntax

GDL Reference Guide 11

GDL SYNTAX
This chapter presents the basic elements of GDL syntax, including statements, labels, identifiers, variables and parameters. Typographic rules are also explained in detail.

RULES OF GDL SYNTAX
GDL is not case sensitive; uppercase and lowercase letters are not distinguished, except in strings placed between quotation marks. The logical
end of a GDL script is denoted by an END / EXIT statement or the physical end of the script.

STATEMENTS
A GDL program consists of statements. A statement can start with a keyword (defining a GDL shape, coordinate transformations or program
control flow), with a macro name, or with a variable name followed by an '=' sign and an expression.

LINE
The statements are in lines separated by line-separators (end_of_line characters).
A comma (,) in the last position indicates that the statement continues on the next line. A colon (:) is used for separating GDL statements in
a line. After an exclamation mark (!) you can write any comment in the line. Blank lines can be inserted into a GDL script with no effect at
all. Any number of spaces or tabs can be used between the operands and operators. The use of a space or tab is obligatory after statement
keywords and macro calls.

LABEL
Any line can start with a label which is used as a reference for a subsequent statement. A label is an integer number or a constant string between
quotation marks, followed by a colon (:). A string label is case sensitive. Labels are checked for single occurrence. The execution of the program
can be continued from any label by using a GOTO or GOSUB statement.

CHARACTERS
The GDL text is composed of the lower and uppercase letters of the English alphabet, any number and the following characters:
<space> _(underline) ~ ! : , ; . + - * / ^ = < > <= >= # () [] { } \ @ & |(vertical
bar) " ' ` ´ “ ” ’ ‘ <end_of_line>

GDL Syntax

GDL Reference Guide 12

STRINGS
Any string of Unicode characters that is placed between quotation marks (", ', “, ’, `, ´), or any string of characters without quotation marks that
does not figure in the script as an identifier with a given value (macro call, attribute name, file name). Strings without quotation marks will be
converted to all caps, so using quotation marks is recommended. The maximum length allowed in a string is 255 characters.
The '\' character has special control values. Its meaning depends on the next character.

\\ '\' char itself

\n new line

\t tabulator

\new line continue string in next line without a new line

\others not correct, results in warning

Example:
"This is a string"
`washbasin 1'-6"*1'-2`
'Do not use different delimiters’

IDENTIFIERS
Identifiers are special ASCII character strings:
• they are not longer than 255 characters;
• they begin with a letter of the alphabet or a '_' or '~' character;
• they consist of ASCII letters, numbers and '_' or '~' characters;
• upper- and lowercase letters are considered identical.
Identifiers can be GDL keywords, global or local variables or strings (names). Keywords and global variable names are determined by the
program you’re using GDL in; all other identifiers can be used as variable names.

VARIABLES
GDL programs can handle numeric and string variables (defined by their identifiers), numbers and character strings.
There are two sets of variables: local and global.

GDL Syntax

GDL Reference Guide 13

All identifiers that are not keywords, global variables, attribute names, macro names or file names are considered local variables. If left
uninitialized (undefined), their value will be 0 (integer). Local variables are stacked with macro calls. When returning from a macro call, the
interpreter restores their values.
Global variables have reserved names (for the list of global variables see the section called “Global Variables”). They are not stacked during macro calls,
enabling the user to store special values of the modeling and to simulate return codes from macros. The user global variables can be set in any
script but they will only be effective in subsequent scripts. If you want to make sure that the desired script is analyzed first, set these variables in
the MASTER_GDL library part. All elements will always read these values set by the Master GDL first, unless their own scripts (caller object
or called macro) modify those values. There is no user global data exchange between the different interpretation instances. The other global
variables can be used in your scripts to communicate with the program. By using the "=" command, you can assign a numeric or string value
to local and global variables.

PARAMETERS
Identifiers listed in a library part’s parameter list are called parameters. Parameter identifiers must not exceed 31 characters in length. And the
maximum number of parameters must not exceed 1024. Within a script, the same rules apply to parameters as to local variables.
Parameters of text-only GDL files are identified by letters A to Z.

SIMPLE TYPES
Variables, parameters and expressions can be of two simple types: numeric or string.
Numeric expressions are constant numbers, numeric variables or parameters, functions that return numeric values, and any combination of these in
operations. Numeric expressions can be integer or real. Integer expressions are integer constants, variables or parameters, functions that return
integer values, and any combination of these in operations which results in integers. Real expressions are real constants, variables or parameters,
functions that return real values, and any combination of these (or integer expressions) in operations which results in reals. A numeric expression
being an integer or a real is determined during the compilation process and depends only on the constants, variables, parameters and the
operations used to combine them. Real and integer expressions can be used the same way at any place where a numeric expression is required,
however, in cases where a combination of these may result in precision problems, a compiler warning appears (comparison of reals or reals and
integers using relational operators '=' or '<>', or boolean operators AND, OR, EXOR; IF or GOTO statements with real label expressions).
String expressions are constant strings, string variables or parameters, functions that return strings, and any combination of these in operations
which result in strings.

DERIVED TYPES
Variables and parameters can also be arrays, and parameters can be value lists of a simple type.

GDL Syntax

GDL Reference Guide 14

Arrays are one- or two-dimensional tables of numeric and/or string values, which can be accessed directly by indexes.
Value lists are sets of possible numeric or string values. They can be assigned to the parameters in the value list script of the library part or in
the MASTER_GDL script, and will appear in the parameter list as a pop-up menu.

STRUCTURED TYPES
Variables and parameters can also be dictionaries. Compatibility: introduced in ARCHICAD 23.
Dictionaries are a hierarchical collection of key and value pairs. Keys can contain other dictionary, array, integer, string or floating-point type values.
Keys are considered identifiers (the section called “Identifiers”) - same syntax rules apply, except the '~' character is not allowed.
It is not allowed to use dictionary keys (even if they are simple type) in the following places:
• as FOR - TO - NEXT loop variable.
• as HOTSPOT2 or HOTSPOT edited or displayed parameter.
• as UI_... input parameter where the input parameter is given as an expression. (UI_INFIELD{2}, UI_INFIELD{3},
UI_CUSTOM_POPUP_INFIELD{2}, UI_RADIOBUTTON, UI_PICT_RADIOBUTTON, UI_PICT_PUSHCHECKBUTTON,
UI_TEXTSTYLE_INFIELD, UI_LISTITEM{2}, UI_CUSTOM_POPUP_LISTITEM{2}, UI_COLORPICKER{2},
UI_SLIDER{2})

• as UI_... input parameter where the input parameter is given as a string, if the string evaluates to a dictionary type parameter.
• as VALUES or VALUES{2} parameter - value lists cannot be applied.
• as REQUEST returned values - only root level of a dictionary is allowed in requests that support it.
• as APPLICATION_QUERY, SPLIT, INPUT, LIBRARYGLOBAL or CALLFUNCTION returned values.
• as STR{2} returned extra_accuracy_string.
• as RETURNED_PARAMETERS of a CALL - only returned dictionaries can be stored only at the root level of a dictionary.

CONVENTIONS USED IN THIS BOOK
[aaa]
Square brackets mean that the enclosed elements are optional (if they are bold, they must be entered as shown).
{n}
command version number
...
Previous element may be repeated
|

GDL Syntax

GDL Reference Guide 15

Exclusive or relation between parameters of a command
variable
Any GDL variable name
prompt
Any character string (must not contain quote character)
bold_string
UPPERCASE_STRING
special characters
Must be entered as shown
other_lowercase_string_in_parameter_list
Any GDL expression

Coordinate Transformations

GDL Reference Guide 16

COORDINATE TRANSFORMATIONS
This chapter tells you about the types of transformations available in GDL (moving, scaling and rotating the coordinate system) and the way
they are interpreted and managed.
About Transformations
In GDL, all the geometric elements are linked strictly to the local coordinate system. GDL uses a right-handed coordinate system. For example,
one corner of a block is in the origin and its sides are in the x-y, x-z and y-z planes.
Placing a geometric element in the desired position requires two steps. First, move the coordinate system to the desired position. Second,
generate the element. Every movement, rotation or stretching of the coordinate system along or around an axis is called a transformation.
Transformations are stored in a stack; interpretation starts from the last one backwards. Scripts inherit this stack; they can insert new elements
onto it but can only delete the locally defined ones. It is possible to delete one, more or all of the transformations defined in the current script.
After returning from a script, the locally defined transformations are removed from the stack.

2D TRANSFORMATIONS
These are the equivalents in the 2D space of the ADD, MUL and ROTZ 3D transformations.

ADD2
ADD2 x, y

Example:
ADD2 a, b

X

Y

X

Y

b

a

MUL2
MUL2 x, y

Coordinate Transformations

GDL Reference Guide 17

ROT2
ROT2 alpha

Example:
ROT2 beta

X

Y

X

Y

beta

3D TRANSFORMATIONS

ADDX
ADDX dx

ADDY
ADDY dy

ADDZ
ADDZ dz
Moves the local coordinate system along the given axis by dx, dy or dz respectively.

ADD
ADD dx, dy, dz
Replaces the sequence ADDX dx: ADDY dy: ADDZ dz.

Example:
ADD a, b, c

Coordinate Transformations

GDL Reference Guide 18

c

b

Z

a

Z

Y

Y

X

X

It has only one entry in the stack, thus it can be deleted with DEL 1.

MULX
MULX mx

MULY
MULY my

MULZ
MULZ mz
Scales the local coordinate system along the given axis. Negative mx, my, mz means simultaneous mirroring.

MUL
MUL mx, my, mz
Replaces the sequence MULX mx: MULY my: MULZ mz. It has only one entry in the stack, thus it can be deleted with DEL 1.

ROTX
ROTX alphax

ROTY
ROTY alphay

Coordinate Transformations

GDL Reference Guide 19

ROTZ
ROTZ alphaz
Rotates the local coordinate system around the given axis by alphax, alphay, alphaz degrees respectively, counterclockwise.

Example:

Y

X

X

Z

Y

beta

ROTZ beta

ROT
ROT x, y, z, alpha
Rotates the local coordinate system around the axis defined by the vector (x, y, z) by alpha degrees, counterclockwise. It has only one entry
in the stack, thus it can be deleted with DEL 1.

XFORM
XFORM newx_x, newy_x, newz_x, offset_x,
 newx_y, newy_y, newz_y, offset_y,
 newx_z, newy_z, newz_z, offset_z
Defines a complete transformation matrix. It is mainly used in automatic GDL code generation. It has only one entry in the stack.
x' = newx_x * x + newy_x * y + newz_x * z + offset_x
y' = newx_y * x + newy_y * y + newz_y * z + offset_y
z' = newx_z * x + newy_z * y + newz_z * z + offset_z

Coordinate Transformations

GDL Reference Guide 20

Example:

A=60
B=30
XFORM 2, COS(A), COS(B)*0.6, 0,
 0, SIN(A), SIN(B)*0.6, 0,
 0, 0, 1, 0
BLOCK 1, 1, 1

MANAGING THE TRANSFORMATION STACK

DEL
DEL n [, begin_with]
Deletes n entries from the transformation stack.
If the begin_with parameter is not specified, deletes the previous n entries in the transformation stack. The local coordinate system moves
back to a previous position.
If the begin_with transformation is specified, deletes n entries forward, beginning with the one denoted by begin_with. Numbering starts with
1. If the begin_with parameter is specified and n is negative, deletes backward.
If fewer transformations were issued in the current script than denoted by the given n number argument, then only the issued transformations
are deleted.

DEL TOP
DEL TOP
Deletes all current transformations in the current script.

NTR
NTR ()
Returns the actual number of transformations.

Coordinate Transformations

GDL Reference Guide 21

Example:

BLOCK 1, 1, 1
ADDX 2
ADDY 2.5
ADDZ 1.5
ROTX -60
ADDX 1.5
BLOCK 1, 0.5, 2
DEL 1, 1 ! Deletes the ADDX 2 transformation
BLOCK 1, 0.5, 1
DEL 1, NTR() - 2 ! Deletes the ADDZ 1.5 transformation
BLOCK 1, 0.5, 2
DEL -2, 3 ! Deletes the ROTX -60 and ADDY 2.5 transformations
BLOCK 1, 0.5, 2

3D Shapes

GDL Reference Guide 22

3D SHAPES
This chapter covers all the 3D shape creation commands available in GDL, from the most basic ones to the generation of complex shapes from polylines. Elements for
visualization (light sources, pictures) are also presented here, as well as the definition of text to be displayed in 3D. Furthermore, the primitives of the internal 3D data
structure consisting of nodes, vectors, edges and bodies are discussed in detail, followed by the interpretation of binary data and guidelines for using cutting planes.

BASIC SHAPES

BLOCK
BLOCK a, b, c

BRICK
BRICK a, b, c

x

y

z

b

c
a

The first corner of the block is in the local origin and the edges with lengths a, b and c are along the x-, y- and z-axes, respectively. Zero values
create degenerated blocks (rectangle or line).
Restriction of parameters:
a >= 0, b >= 0, c >= 0
a + b + c > 0

3D Shapes

GDL Reference Guide 23

CYLIND
CYLIND h, r

x

y

z

r

h

Right cylinder, coaxial with the z-axis with a height of h and a radius of r.
If h=0, a circle is generated in the x-y plane.
If r=0, a line is generated along the z axis.

SPHERE
SPHERE r
A sphere with its center at the origin and with a radius of r.

3D Shapes

GDL Reference Guide 24

x

y

z

r

ELLIPS
ELLIPS h, r
Half ellipsoid. Its cross-section in the x-y plane is a circle with a radius of r centered at the origin. The length of the half axis along the z-axis is h.

Example: Hemisphere
ELLIPS h, r

x

y

z

h

r

3D Shapes

GDL Reference Guide 25

CONE
CONE h, r1, r2, alpha1, alpha2

y

x

z

x

z

r1

r2

h

alpha2

alpha1

Frustum of a cone where alpha1 and alpha2 are the angles of inclination of the end surfaces to the z axis, r1 and r2 are the radii of the end-
circles and h is the height along the z axis.
If h=0, the values of alpha1 and alpha2 are disregarded and an annulus is generated in the x-y plane.
alpha1 and alpha2 are in degrees.
Restriction of parameters:
0 < alpha1 < 180° and 0 < alpha2 < 180°

Example: A regular cone
CONE h, r, 0, 90, 90

PRISM
PRISM n, h, x1, y1, ..., xn, yn
Right prism with its base polygon in the x-y plane (see the parameters of the POLY command and the POLY_ command). The height along
the z-axis is abs(h). Negative h values can also be used. In that case the second base polygon is below the x-y plane.
Restriction of parameters:
n >= 3

3D Shapes

GDL Reference Guide 26

x

y

z

h

n

1
2

PRISM_
PRISM_ n, h, x1, y1, s1, ..., xn, yn, sn
Similar to the PRISM command, but any of the horizontal edges and sides can be omitted.
Restriction of parameters:
n >= 3

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

See Status Codes for details.

3D Shapes

GDL Reference Guide 27

Example 1: Solid and hollow faces

PRISM_ 4,1,
 0,0,15,
 1,1,15,
 2,0,15,
 1,3,15

PRISM_ 4,1,
 0,0,7,
 1,1,5,
 2,0,15,
 1,3,15

3D Shapes

GDL Reference Guide 28

Example 2: Holes in the polygon

ROTX 90
PRISM_ 26, 1.2,
 0.3, 0, 15,
 0.3, 0.06, 15,
 0.27, 0.06, 15,
 0.27, 0.21, 15,
 0.25, 0.23, 15,
 -0.25, 0.23, 15,
 -0.27, 0.21, 15,
 -0.27, 0.06, 15,
 -0.3, 0.06, 15,
 -0.3, 0, 15,
 0.3, 0, -1, !End of contour
 0.10, 0.03, 15,
 0.24, 0.03, 15,
 0.24, 0.2, 15,
 0.10, 0.2, 15,
 0.10, 0.03, -1, !End of first hole
 0.07, 0.03, 15,
 0.07, 0.2, 15,
 -0.07, 0.2, 15,
 -0.07, 0.03, 15,
 0.07, 0.03, -1, !End of second hole
 -0.24, 0.03, 15,
 -0.24, 0.2, 15,
 -0.1, 0.2, 15,
 -0.1, 0.03, 15,
 -0.24, 0.03, -1 !End of third hole

3D Shapes

GDL Reference Guide 29

Example 3: Curved surface

j7 = 0 j7 = 1

R=1
H=3
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 15,
 COS(210)*R, SIN(210)*R, 15,
 COS(240)*R, SIN(240)*R, 15,
 COS(270)*R, SIN(270)*R, 15,
 COS(300)*R, SIN(300)*R, 15,
 COS(330)*R, SIN(330)*R, 15,
 COS(360)*R, SIN(360)*R, 15,
 R, R, 15

R=1
H=3
PRISM_ 9, H,
 -R, R, 15,
 COS(180)*R, SIN(180)*R, 64+15,
 COS(210)*R, SIN(210)*R, 64+15,
 COS(240)*R, SIN(240)*R, 64+15,
 COS(270)*R, SIN(270)*R, 64+15,
 COS(300)*R, SIN(300)*R, 64+15,
 COS(330)*R, SIN(330)*R, 64+15,
 COS(360)*R, SIN(360)*R, 64+15,
 R, R, 15

CPRISM_
CPRISM_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, s1, ..., xn, yn, sn
Extension of the PRISM_ command. The first three parameters are used for the material name/index of the top, bottom and side surfaces.
The other parameters are the same as above in the PRISM_ command.
Restriction of parameters:

3D Shapes

GDL Reference Guide 30

n >= 3
See also the section called “Materials”.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

Example: Material referencing a predefined material by name, index and global variable

CPRISM_ "Mtl-Iron", 0, SYMB_MAT,
 13, 0.2,
 0, 0, 15,
 2, 0, 15,
 2, 2, 15,
 0, 2, 15,
 0, 0, -1, !end of the contour
 0.2, 0.2, 15,
 1.8, 0.2, 15,
 1.0, 0.9, 15,
 0.2, 0.2, -1, !end of first hole
 0.2, 1.8, 15,
 1.8, 1.8, 15,
 1.0, 1.1, 15,
 0.2, 1.8, -1 !end of second hole

CPRISM_{2}
CPRISM_{2} top_material, bottom_material, side_material,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

3D Shapes

GDL Reference Guide 31

CPRISM_{2} is an extension of the CPRISM_ command with the possibility of defining different angles and materials for each side of the prism.
The side angle definition is similar to the one of the CROOF_ command.
alphai: the angle between the face belonging to the edge i of the prism and the plane perpendicular to the base.
mati: material reference that allows you to control the material of the side surfaces.

CPRISM_{3}
CPRISM_{3} top_material, bottom_material, side_material, mask,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn
CPRISM_{3} is an extension of the CPRISM_{2} command with the possibility of controlling the global behavior of the generated prism.
mask: controls the global behavior of the generated prism.
mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.
j4: side edge and surface is smooth in curved sections of the profile. Compatibility: introduced in ARCHICAD 21.

3D Shapes

GDL Reference Guide 32

Example 1:

PEN 1
mat = IND (MATERIAL, "Metal-Aluminium")
FOR i=1 TO 4 STEP 1
 IF i = 1 THEN mask = 1+2+4
 IF i = 2 THEN mask = 1
 IF i = 3 THEN mask = 2
 IF i = 4 THEN mask = 4
 CPRISM_{3} mat, mat, mat, mask,
 5, 1,
 0, 0, 0, 15, mat,
 1, 0, 0, 15, mat,
 1, 1, 0, 15, mat,
 0, 1, 0, 15, mat,
 0, 0, 0, -1, mat
 BODY -1
 DEL TOP
 IF i = 1 THEN ADDY 1
 IF i = 2 THEN ADDX -1
 IF i = 3 THEN ADDX 1
NEXT i

3D Shapes

GDL Reference Guide 33

Example 2:

PEN 1
mat = IND (MATERIAL, "Metal-Aluminium")
!visible side segment edges
mask = 1 + 2 + 4
_secondStat = 15
CPRISM_{3} mat, mat, mat, mask,
 6, 1,
 0, 0, 0, 15, mat,
 1, 0, 0, _secondStat, mat,
 0.5, 0.5, 0, 900, mat,
 1, 1, 0, 3015, mat,
 0, 1, 0, 15, mat,
 0, 0, 0, -1, mat
!smooth edges using first node status copy
mask = 1 + 2 + 4
_secondStat = 15 + 64
CPRISM_{3} mat, mat, mat, mask,
 6, 1,
 0, 0, 0, 15, mat,
 1, 0, 0, _secondStat, mat,
 0.5, 0.5, 0, 900, mat,
 1, 1, 0, 3015, mat,
 0, 1, 0, 15, mat,
 0, 0, 0, -1, mat
!smooth edges using mask, first edge is not smooth
mask = 1 + 2 + 4 + 8
_secondStat = 15
CPRISM_{3} mat, mat, mat, mask,
 6, 1,
 0, 0, 0, 15, mat,
 1, 0, 0, _secondStat, mat,
 0.5, 0.5, 0, 900, mat,
 1, 1, 0, 3015, mat,
 0, 1, 0, 15, mat,
 0, 0, 0, -1, mat

3D Shapes

GDL Reference Guide 34

CPRISM_{4}
CPRISM_{4} top_material, bottom_material, side_material, mask,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn
CPRISM_{4} is an extension of the CPRISM_{3} command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

BPRISM_
BPRISM_ top_material, bottom_material, side_material,
 n, h, radius,
 x1, y1, s1,
 ...
 xn, yn, sn
A smooth curved prism, based on the same data structure as the straight CPRISM_ element. The only additional parameter is radius.
Derived from the corresponding CPRISM_ by bending the x-y plane onto a cylinder tangential to that plane. Edges along the x axis are
transformed to circular arcs; edges along the y axis remain horizontal; edges along the z axis will be radial in direction.
See the BWALL_ command for details.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

Example: Curved prisms with the corresponding straight ones

BPRISM_ "Glass - Blue",
 "Glass - Blue",
 "Glass - Blue",
 3, 0.4, 1, ! radius = 1
 0, 0, 15,
 5, 0, 15,
 1.3, 2, 15

3D Shapes

GDL Reference Guide 35

BPRISM_ "Concrete", "Concrete", "Concrete",
 17, 0.3, 5,
 0, 7.35, 15,
 0, 2, 15,
 1.95, 0, 15,
 8, 0, 15,
 6.3, 2, 15,
 2, 2, 15,
 4.25, 4, 15,
 8, 4, 15,
 8, 10, 15,
 2.7, 10, 15,
 0, 7.35, -1,
 4, 8.5, 15,
 1.85, 7.05, 15,
 3.95, 5.6, 15,
 6.95, 5.6, 15,
 6.95, 8.5, 15,
 4, 8.5, -1

FPRISM_
FPRISM_ top_material, bottom_material, side_material, hill_material,
 n, thickness, angle, hill_height,
 x1, y1, s1,
 ...
 xn, yn, sn
Similar to the PRISM_ command, with the additional hill_material, angle and hill_height parameters for forming a ramp on the top.
hill_material: the side material of the ramp part.
angle: the inclination angle of the ramp side edges.

Restriction: 0 <= angle < 90.
If angle = 0, the hill side edges seen from an orthogonal view form a quarter circle with the current resolution (see the RADIUS command,
the RESOL command and the TOLER command).

hill_height: the height of the ramp. Note that the thickness parameter represents the whole height of the prism.

3D Shapes

GDL Reference Guide 36

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

Restriction of parameters:
n >= 3, hill_height < thickness

See Status Codes for details.

1

n

2

hill_height
thickness

angle

Example 1: Prism with curved ramp

RESOL 10
FPRISM_ "Roof Tile", "Brick-Red", "Brick-White", "Roof Tile",
 4, 1.5, 0, 1.0, !angle = 0
 0, 0, 15,
 5, 0, 15,
 5, 4, 15,
 0, 4, 15

3D Shapes

GDL Reference Guide 37

Example 2: Prism with straight ramp

FPRISM_ "Roof Tile", "Brick-Red", "Brick-White",
 "Roof Tile",
 10, 2, 45, 1,
 0, 0, 15,
 6, 0, 15,
 6, 5, 15,
 0, 5, 15,
 0, 0, -1,
 1, 2, 15,
 4, 2, 15,
 4, 4, 15,
 1, 4, 15,
 1, 2, -1

HPRISM_
HPRISM_ top_mat, bottom_mat, side_mat,
 hill_mat,
 n, thickness, angle, hill_height, status,
 x1, y1, s1,
 ...
 xn, yn, sn
Similar to FPRISM_, with an additional parameter controlling the visibility of the hill edges.
status: controls the visibility of the hill edges:
0: hill edges are all visible (FPRISM_)

3D Shapes

GDL Reference Guide 38

1: hill edges are invisible

SPRISM_
SPRISM_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, h, angle,
 x1, y1, s1,
 ...
 xn, yn, sn
Extension of the CPRISM_ command, with the possibility of setting the upper polygon non-parallel with the x-y plane. The upper plane
definition is similar to the plane definition of the CROOF_ command. The height of the prism is defined at the reference line. Upper and
lower polygon intersection is forbidden.

n

h

1

2

(x ,y)b b
(x ,y)ee

angle

xb, yb, xe, ye: reference line (vector) starting and end coordinates.
angle: rotation angle of the upper polygon around the given oriented reference line in degrees (CCW).
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

Note: All calculated z coordinates of the upper polygon nodes must be positive or 0.

3D Shapes

GDL Reference Guide 39

Example:

SPRISM_ 'Grass', 'Earth', 'Earth',
 6,
 0, 0, 11, 6, 2, -10.0,
 0, 0, 15,
 10, 1, 15,
 11, 6, 15,
 5, 7, 15,
 4.5, 5.5, 15,
 1, 6, 15

SPRISM_{2}
SPRISM_{2} top_material, bottom_material, side_material,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn
Extension of the SPRISM_ command, with the possibility of having an upper and lower polygon non-parallel with the x-y plane. The definition
of the planes is similar to the plane definition of the CROOF_ command. The top and bottom of the prism is defined at the reference line.
Upper and lower polygon intersection is forbidden.
xtb, ytb, xte, yte: reference line (vector) of the top polygon starting and end coordinates.
topz: the 'z' level of the reference line of the top polygon.
tangle: rotation angle of the top polygon around the given oriented reference line in degrees (CCW).
xbb, ybb, xbe, ybe: reference line (vector) of the bottom polygon starting and end coordinates.
bottomz: the 'z' level of the reference line of the bottom polygon.
bangle: rotation angle of the bottom polygon around the given oriented reference line in degrees (CCW).
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

3D Shapes

GDL Reference Guide 40

mati: material reference that allows you to control the material of the side surfaces.

Example:

SPRISM_{2} 'Grass', 'Earth', 'Earth',
 11,
 0, 0, 11, 0, 30, -30.0,
 0, 0, 0, 11, 2, 30.0,
 0, 0, 15, IND (MATERIAL, 'C10'),
 10, 1, 15, IND (MATERIAL, 'C11'),
 11, 6, 15, IND (MATERIAL, 'C12'),
 5, 7, 15, IND (MATERIAL, 'C13'),
 4, 5, 15, IND (MATERIAL, 'C14'),
 1, 6, 15, IND (MATERIAL, 'C10'),
 0, 0, -1, IND (MATERIAL, 'C15'),
 9, 2, 15, IND (MATERIAL, 'C15'),
 10, 5, 15, IND (MATERIAL, 'C15'),
 6, 4, 15, IND (MATERIAL, 'C15'),
 9, 2, -1, IND (MATERIAL, 'C15')

SPRISM_{3}
SPRISM_{3} top_material, bottom_material, side_material, mask,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn
Extension of the SPRISM_{2} command with the possibility of controlling the global behavior of the generated prism.
mask: controls the global behavior of the generated prism.
mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.

3D Shapes

GDL Reference Guide 41

j4: side edge and surface is smooth in curved sections of the profile. Compatibility: introduced in ARCHICAD 21.

Example:

PEN 1
mat = IND (MATERIAL, "Metal-Aluminium")
FOR i=1 TO 4 STEP 1
 IF i = 1 THEN mask = 1+2+4
 IF i = 2 THEN mask = 1
 IF i = 3 THEN mask = 2
 IF i = 4 THEN mask = 4
 SPRISM_{3} mat, mat, mat, mask,
 5,
 0, 0, 1, 0, 1, 0,
 0, 0, 1, 0, 0, 0,
 0, 0, 15, mat,
 1, 0, 15, mat,
 1, 1, 15, mat,
 0, 1, 15, mat,
 0, 0, -1, mat

 BODY -1
 DEL TOP
 IF i = 1 THEN ADDY 1
 IF i = 2 THEN ADDX -1
 IF i = 3 THEN ADDX 1
NEXT i

SPRISM_{4}
SPRISM_{4} top_material, bottom_material, side_material, mask,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn

3D Shapes

GDL Reference Guide 42

SPRISM_{4} is an extension of the SPRISM_{3} command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

SLAB
SLAB n, h, x1, y1, z1, ..., xn, yn, zn
Oblique prism. The lateral faces are always perpendicular to the x-y plane. Its bases are flat polygons rotated about an axis parallel with the x-y
plane. Negative h values can also be used. In that case the second base polygon is below the given one.
No check is made as to whether the points are really on a plane. Apices not lying on a plane will result in strange shadings/ renderings.
Restriction of parameters:
n >= 3

x

y

z

SLAB_
SLAB_ n, h, x1, y1, z1, s1, ..., xn, yn, zn, sn
Similar to the SLAB command, but any of the edges and faces of the side polygons can be omitted. This statement is an analogy of the PRISM_
command.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

3D Shapes

GDL Reference Guide 43

CSLAB_
CSLAB_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, z1, s1, ..., xn, yn, zn, sn
Extension of the SLAB_ command; the first three parameters are used for the material name/index of the top, bottom and side surfaces. The
other parameters are the same as above in the SLAB_ command.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
See Status Codes for details.

CWALL_
CWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm
Left_material, right_material, side_material: Material names/indices for the left, right and side surfaces. (The left

and right sides of the wall follow the x axis.)

The reference line of the wall is always transformed to coincide with the x axis. The sides of the wall are in the x-z plane.
height: The height of the wall relative to its base.

3D Shapes

GDL Reference Guide 44

x1, x2, x3, x4: The projected endpoints of the wall lying on the x-y plane as seen below. If the wall stands on its own, then x1 =
x4 = 0, x2 = x3 = the length of the wall.

t: the thickness of the wall.
t < 0: if the body of the wall is to the right of the x axis,
t > 0: if the body of the wall is to the left of the x axis,
t = 0: if the wall is represented by a polygon and frames are generated around the holes.

x4 x2x3x1

Y

X

t

mask1, mask2, mask3, mask4: Control the visibility of edges and side polygons.
mask1, mask2, mask3, mask4 = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
The j1, j2, j3 bits represent whether the edges of the side polygon are present (1) or omitted (0). The j4 bit represents whether edges on the
side polygon arisen from cut are present (1) or omitted (0).

3D Shapes

GDL Reference Guide 45

j4

j3

Z

X

Y

j1

mask 1

j2

mask 4 mask 2

mask 3

n: the number of openings in the wall.
x_starti, y_lowi, x_endi, y_highi: coordinates of the openings as shown below.

X

Z

i

i

i

i

he
ig

ht

x_start
x_end

y_
lo

w y_
hi

gh

frame_showni:
1: if the edges of the hole are visible,
0: if the edges of the hole are invisible,
< 0: control the visibility of each of the opening’s edges separately: frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7
+ 128*j8), where j1, j2, ..., j8 can be either 0 or 1. The numbers j1 to j4 control the visibility of the edges of the hole on the left-hand side of
the wall surface, while j5 to j8 affect the edges on the right-hand side, as shown on the illustration below.

3D Shapes

GDL Reference Guide 46

j4

j3

j1
j2

j5

j7

j6

j8

Y

Z

X

An edge that is perpendicular to the surface of the wall is visible if there are visible edges drawn from both of its endpoints.
m: the number of cutting planes.
ai, bi, ci, di: coefficients of the equation defining the cutting plane [ai*x + bi*y + ci*z = di]. Parts on the positive side of the

cutting plane (i.e., ai*x + bi*y + ci*z > di) will be cut and removed

[ai, bi, ci]

3D Shapes

GDL Reference Guide 47

BWALL_
BWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t, radius,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm
A smooth curved wall based on the same data structure as the straight wall CWALL_ element. The only additional parameter is radius. Derived
from the corresponding CWALL_ by bending the x-z plane onto a cylinder tangential to that plane. Edges along the x axis are transformed to
circular arcs, edges along the y axis will be radial in direction, and vertical edges remain vertical. The curvature is approximated by a number of
segments set by the current resolution (see the RADIUS command, the RESOL command and the TOLER command).
See also the CWALL_ command for details.

Example 1: a BWALL_ and the corresponding CWALL_

y

x

r

3D Shapes

GDL Reference Guide 48

Example 2:

ROTZ -60
BWALL_ 1, 1, 1,
 4, 0, 6, 6, 0,
 0.3, 2,
 15, 15, 15, 15,
 5,
 1, 1, 3.8, 2.5, -255,
 1.8, 0, 3, 2.5, -255,
 4.1, 1, 4.5, 1.4, -255,
 4.1, 1.55, 4.5, 1.95,-255,
 4.1, 2.1, 4.5, 2.5, -255,
 1, 0, -0.25, 1, 3

3D Shapes

GDL Reference Guide 49

XWALL_
XWALL_ left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,
 status
Extended wall definition based on the same data structure as the BWALL_ element.
vertical_material, horizontal_material: name or index of the vertical/horizontal side materials.
y1, y2, y3, y4: the projected endpoints of the wall lying in the x-y plane as seen below.

x

y

x1 x2 x3 x4
y3
y2

y1
y4

log_height, log_offset: additional parameters allowing you to compose a wall from logs. Effective only for straight walls.

3D Shapes

GDL Reference Guide 50

logoffset

logheight

status: controls the behavior of log walls
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
j1: apply right side material on horizontal edges,
j2: apply left side material on horizontal edges,
j3: start with half log,
j6: align texture to wall edges,
j7: double radius on bended side,
j8: square log on the right side,
j9: square log on the left side.

Example:

3D Shapes

GDL Reference Guide 51

XWALL_ "Surf-White", "Surf-White", "Surf-White", "Surf-White",
 3.0,
 0.0, 4.0, 4.0, 0.0,
 0.0, 0.0, 0.3, 1.2,
 1.2, 0.0,
 0.0, 0.0,
 15, 15, 15, 15,
 3,
 0.25, 0.0, 1.25, 2.5, -255,
 1.25, 1.5, 2.25, 2.5, -255,
 2.25, 0.5, 3.25, 2.5, -255, 0

XWALL_{2}
XWALL_{2} left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 sill_depth1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 sill_depthn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,
 status
Extended wall definition based on the same data structure as the XWALL_ element.
silldepthi: logical depth of the opening sill. If the j9 bit of the frame_showni parameter is set, the wall side materials wraps the hole

polygons, silldepthi defining the separator line between them.
frame_showni:
1: if the edges of the hole are visible,
0: if the edges of the hole are invisible,

3D Shapes

GDL Reference Guide 52

< 0: control the visibility of each of the opening’s edges separately: frame_showni = -(1*j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7
+ 128*j8 + 256*j9 + 512*j10), where j1, j2, ..., j10 can be either 0 or 1. There are two additional values to control the material wrapping.
The meaning of the j1, j2, ..., j8 values are the same as at the CWALL_ and XWALL_ commands. The j9 value controls the material of the
hole polygons. If j9 is 1, the hole inherits the side materials of the wall. The j10 value controls the form of the separator line between the
hole materials on the upper and lower polygons of the hole in case of a bent wall. If the j10 value is 1, the separator line will be straight,
otherwise curved.

XWALL_{3}
XWALL_{3} left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 sill_depth1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 sill_depthn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,
 status
XWALL_{3} is an extension of XWALL_{2} command with the possibility of hiding all edges of the log wall.
status: controls the behavior of log walls
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8 + 256*j9 + 512*j10, where each j can be 0 or 1.
j1: apply right side material on horizontal edges,
j2: apply left side material on horizontal edges,
j3: start with half log,
j6: align texture to wall edges,
j7: double radius on bended side,
j8: square log on the right side,
j9: square log on the left side,

3D Shapes

GDL Reference Guide 53

j10: hide all edges of log wall.

Example:

3D Shapes

GDL Reference Guide 54

ROTZ 90
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 4, 4, 0,
 0, 0, 1, 1,
 1, 0,
 0, 0,
 15, 15, 15, 15,
 1,
 1, 0.9, 3, 2.1, 0.3, -(255 + 256),
 0,
 0
DEL 1
ADDX 2
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 2 * PI, 2 * PI, 0,
 0, 0, 1, 1,
 1, 2,
 0, 0,
 15, 15, 15, 15,
 1,
 1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256),
 0,
 0
ADDX 4
xWALL_{2} "C13", "C11", "C12", "C12",
 2, 0, 2 * PI, 2 * PI, 0,
 0, 0, 1, 1,
 1, 2,
 0, 0,
 15, 15, 15, 15,
 1,
 1.6, 0.9, 4.6, 2.1, 0.3, -(255 + 256 + 512),
 0,
 0

3D Shapes

GDL Reference Guide 55

BEAM
BEAM left_material, right_material, vertical_material,
 top_material, bottom_material,
 height,
 x1, x2, x3, x4,
 y1, y2, y3, y4, t,
 mask1, mask2, mask3, mask4
Beam definition. Parameters are similar to those of the XWALL_ element.
top_material, bottom_material: top and bottom materials.

Example:

BEAM 1, 1, 1, 1, 1,
 0.3,
 0.0, 7.0, 7.0, 0.0,
 0.0, 0.0, 0.1, 0.1, 0.5,
 15, 15, 15, 15

CROOF_
CROOF_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1,
 ...
 xn, yn, alphan, sn
A sloped roof pitch with custom angle ridges.
top_material, bottom_material, side_material: name/index of the top, bottom and side material.
n: the number of nodes in the roof polygon.
xb, yb, xe, ye: reference line (vector).

3D Shapes

GDL Reference Guide 56

height: the height of the roof at the reference line (lower surface).
angle: the rotation angle of the roof plane around the given oriented reference line in degrees (CCW).
thickness: the thickness of the roof measured perpendicularly to the plane of the roof.
xi, yi: the coordinates of the nodes of the roof ’s lower polygon.
alphai: the angle between the face belonging to the edge i of the roof and the plane perpendicular to the roof plane, -90° < alphai <

90°. Looking in the direction of the edge of the properly oriented roof polygon, the CCW rotation angle is positive. The edges of the roof
polygon are oriented properly if, in top view, the contour is sequenced CCW and the holes are sequenced CW.

si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments
and arcs in the polyline using special constraints.

x

y

z

he
ig

ht

alphai

angle(xe, ye)

(xb, yb)

See Status Codes for details.
Restriction of parameters:
n >= 3

3D Shapes

GDL Reference Guide 57

Example 1:

CROOF_ 1, 1, 1, ! materials
 9,
 0, 0,
 1, 0, ! reference line (xb,yb)(xe,ye)
 0.0, ! height
 -30, ! angle
 2.5, ! thickness
 0, 0, -60, 15,
 10, 0, 0, 15,
 10, 20, -30, 15,
 0, 20, 0, 15,
 0, 0, 0, -1,
 2, 5, 0, 15,
 8, 5, 0, 15,
 5, 15, 0, 15,
 2, 5, 0, -1

3D Shapes

GDL Reference Guide 58

Example 2:

L=0.25
r=(0.6^2+L^2)/(2*L)
a=ASN(0.6/r)
CROOF_ "Roof Tile", "Pine", "Pine",
 16, 2, 0, 0,
 0, 0, 45, -0.2*SQR(2),
 0, 0, 0, 15,
 3.5, 0, 0, 15,
 3.5, 3, -45, 15,
 0, 3, 0, 15,
 0, 0, 0, -1,
 0.65, 1, -45, 15,
 1.85, 1, 0, 15,
 1.85, 2.4-L, 0, 13,
 1.25, 2.4-r, 0, 900,
 0, 2*a, 0, 4015,
 0.65, 1, 0, -1,
 2.5, 2, 45, 15,
 3, 2, 0, 15,
 3, 2.5, -45, 15,
 2.5, 2.5, 0, 15,
 2.5, 2, 0, -1

CROOF_{2}
CROOF_{2} top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn
Extension of the CROOF_ command with the possibility of defining different materials for the sides.
mati: material reference that allows you to control the material of the side surfaces.

3D Shapes

GDL Reference Guide 59

CROOF_{3}
CROOF_{3} top_material, bottom_material, side_material, mask,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn
Extension of the CROOF_{2} command with the possibility of controlling the global behavior of the generated roof.
mask: controls the global behavior of the generated roof.
mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: top edge in line elimination.
j2: bottom edge in line elimination.
j3: side edge in line elimination.
j4: side edge and surface is smooth in curved sections of the profile. Compatibility: introduced in ARCHICAD 21.

Example:

PEN 1
mat = IND (MATERIAL, "Metal-Aluminium")
FOR i=1 TO 4 STEP 1
 IF i = 1 THEN mask = 1+2+4
 IF i = 2 THEN mask = 1
 IF i = 3 THEN mask = 2
 IF i = 4 THEN mask = 4
 CROOF_{3} mat, mat, mat, mask,
 5, 0, 1, 2, 1, 3, -45, 0.3,
 0, 0, 0, 15, mat,
 1, 0, 0, 15, mat,
 1, 1, 0, 15, mat,
 0, 1, 0, 15, mat,
 0, 0, 0, -1, mat
 BODY -1
 DEL TOP
 IF i = 1 THEN ADD 0,1,1
 IF i = 2 THEN ADDX -1
 IF i = 3 THEN ADDX 1
NEXT i

3D Shapes

GDL Reference Guide 60

CROOF_{4}
CROOF_{4} top_material, bottom_material, side_material, mask,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn
CROOF_{4} is an extension of the CROOF_{3} command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

MESH
MESH a, b, m, n, mask,
 z11, z12, ..., z1m,
 z21, z22, ..., z2m,
 ...
 zn1, zn2, ..., znm
A simple smooth mesh based on a rectangle with an equidistant net. The sides of the base rectangle are a and b; the m and n points are along
the x and y axes respectively; zij is the height of the node.
Masking:

i

n

m
1

Y

Zij

1

Z

X

j
b

a

mask:
mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: base surface is present,

3D Shapes

GDL Reference Guide 61

j3: side surfaces are present,
j5: base and side edges are visible,
j6: top edges are visible,
j7: top edges are visible, top surface is not smooth.

Restriction of parameters:
m >= 2, n >= 2

Example 1:

MESH 50, 30, 5, 6, 1+4+16+32+64,
 2, 4, 6, 7, 8,
 10, 3, 4, 5, 6,
 7, 9, 5, 5, 7,
 8, 10, 9, 4, 5,
 6, 7, 9, 8, 2,
 4, 5, 6, 8, 6

Example 2:

3D Shapes

GDL Reference Guide 62

MESH 90, 100, 12, 8, 1+4+16+32+64,
 17,16,15,14,13,12,11,10,10,10,10, 9,
 16,14,13,11,10, 9, 9, 9,10,10,12,10,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,11,
 16,14,12,11, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,12,12,
 16,14,12,12, 5, 5, 5, 5, 5,11,13,14,
 17,17,15,13,12,12,12,12,12,12,15,15,
 17,17,15,13,12,12,12,12,13,13,16,16

ARMC
ARMC r1, r2, l, h, d, alpha

z

x

y

x

h

d

r2

r1

l

alpha

A piece of tube starting from another tube; parameters according to the figure (penetration curves are also calculated and drawn). The alpha
value is in degrees.
Restriction of parameters:
r1 >= r2 + d
r1 <= l*sin(alpha) - r2*cos(alpha)

3D Shapes

GDL Reference Guide 63

Example:

ROTY 90
CYLIND 10,1
ADDZ 6
ARMC 1, 0.9, 3, 0, 0, 45
ADDZ -1
ROTZ -90
ARMC 1, 0.75, 3, 0, 0, 90
ADDZ -1
ROTZ -90
ARMC 1, 0.6, 3, 0, 0, 135

ARME
ARME l, r1, r2, h, d

y

z

h

d
r2

r1

l

A piece of tube starting from an ellipsoid in the y-z plane; parameters according to the figure (penetration lines are also calculated and drawn).
Restriction of parameters:
r1 >= r2+d
l >= h*sqrt(1-(r2-d)2/r12)

3D Shapes

GDL Reference Guide 64

Example:

ELLIPS 3,4
FOR i=1 TO 6
 ARME 6,4,0.5,3,3.7-0.2*i
 ROTZ 30
NEXT i

ELBOW
ELBOW r1, alpha, r2
A segmented elbow in the x-z plane. The radius of the arc is r1, the angle is alpha and the radius of the tube segment is r2. The alpha value
is in degrees.
Restriction of parameters:
r1 > r2

x

z

alpha r1

r2

3D Shapes

GDL Reference Guide 65

Example:

ROTY 90
ELBOW 2.5, 180, 1
ADDZ -4
CYLIND 4, 1
ROTZ -90
MULZ -1
ELBOW 5, 180, 1
DEL 1
ADDX 10
CYLIND 4, 1
ADDZ 4
ROTZ 90
ELBOW 2.5, 180, 1

PLANAR SHAPES IN 3D
The drawing elements presented in this section can be used in 3D scripts, allowing you to define points, lines, arcs, circles and planar polygons
in the three-dimensional space.

HOTSPOT
HOTSPOT x, y, z [, unID [, paramReference [, flags [, displayParam [, customDescription]]]]]
A 3D hotspot in the point (x, y, z).
unID: the unique identifier of the hotspot in the 3D script. It is useful if you have a variable number of hotspots.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be

passed as well.
customDescription: custom description of the displayed parameter in the information palette. When using this option, displayParam

must be set as well (use paramReference for default).
See Graphical Editing Using Hotspots for using HOTSPOT.

HOTLINE
HOTLINE x1, y1, z1, x2, y2, z2, unID

3D Shapes

GDL Reference Guide 66

A status line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

HOTARC
HOTARC r, alpha, beta, unID
A status arc in the x-y plane with its center at the origin from angle alpha to beta with a radius of r.
Alpha and beta are in degrees.

LIN_
LIN_ x1, y1, z1, x2, y2, z2
A line segment between the points P1 (x1,y1,z1) and P2 (x2,y2,z2).

RECT
RECT a, b

x

y
a

b

A rectangle in the x-y plane with sides a and b.
Restriction of parameters:
a >= 0, b >= 0

POLY
POLY n, x1, y1, ..., xn, yn

3D Shapes

GDL Reference Guide 67

x

y

1 2 3

n

A polygon with n edges in the x-y plane. The coordinates of nodei are (xi, yi, 0).
Restriction of parameters:
n >= 3

POLY_
POLY_ n, x1, y1, s1, ..., xn, yn, sn
Similar to the normal POLY statement, but any of the edges can be omitted.
si: status code that allows you to control the visibility of polygon edges and side surfaces. You can also define holes and create segments

and arcs in the polyline using special constraints.
si = 0: the edge starting from the (xi,yi) apex will be omitted,
si = 1: the edge will be shown,
si = -1: is used to define holes directly.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

3D Shapes

GDL Reference Guide 68

x

y

1 2 3

n

x

y

1 2 3

n

Restriction of parameters:
n >= 3

PLANE
PLANE n, x1, y1, z1, ..., xn, yn, zn
A polygon with n edges on an arbitrary plane. The coordinates of nodei are (xi, yi, zi). The polygon must be planar in order to get a correct
shading/rendering result, but the interpreter does not check this condition.
Restriction of parameters:
n >= 3

PLANE_
PLANE_ n, x1, y1, z1, s1, ..., xn, yn, zn, sn
Similar to the PLANE command, but any of the edges can be omitted as in the POLY_ command.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes”.
Restriction of parameters:
n >= 3

CIRCLE
CIRCLE r
A circle in the x-y plane with its center at the origin and with a radius of r.

3D Shapes

GDL Reference Guide 69

x

y

r

ARC
ARC r, alpha, beta

x

y

r

alpha

beta

An arc (in Wireframe mode) or sector (in other modes) in the x-y plane with its center at the origin from angle alpha to beta with a radius
of r. alpha and beta are in degrees.

SHAPES GENERATED FROM POLYLINES
These elements let you create complex 3D shapes using a polyline and a built-in rule. You can rotate, project or translate the given polyline.
The resulting bodies are a generalization of some previously described elements like PRISM_ and CYLIND.
Shapes generated from a single polyline:

3D Shapes

GDL Reference Guide 70

• EXTRUDE
• PYRAMID
• REVOLVE
Shapes generated from two polylines:
• RULED
• SWEEP
• TUBE
• TUBEA
The first polyline is always in the x-y plane. Points are determined by two coordinates; the third value is the status (see below). The second
polyline (for RULED, SWEEP, TUBE and TUBEA) is a space curve. Apices are determined by three coordinate values.
Shape generated from four polylines:
• COONS
Shape generated from any number of polylines:
• MASS
General restrictions for polylines
• Adjacent vertices must not be coincident (except RULED).
• The polyline must not intersect itself (this is not checked by the program, but hidden line removal and rendering will be incorrect).
• The polylines may be either open or closed. In the latter case, the first node must be repeated after the last one of the contour.
Masking
Mask values are used to show or hide characteristic surfaces and/or edges of the 3D shape. The mask values are specific to each element and
you can find a more detailed description in their corresponding sections/chapters.
mask:
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1, j2, j3, j4 represent whether the surfaces are present (1) or omitted (0).
j5, j6, j7 represent whether the edges are visible (1) or invisible (0).
j1: base surface.
j2: top surface.
j3: side surface.
j4: other side surface.
j5: base edges.
j6: top edges.

3D Shapes

GDL Reference Guide 71

j7: cross-section/surface edges are visible, surface is not smooth.
To enable all faces and edges, set mask value to 127.

Status
Status values are used to state whether a given point of the polyline will leave a sharp trace of its rotation path behind.
0: latitudinal arcs/lateral edges starting from the node are all visible.
1: latitudinal arcs/lateral edges starting from the node are used only for showing the contour.
-1: for EXTRUDE only: it marks the end of the enclosing polygon or a hole, and means that the next node will be the first node of another hole.
Additional status codes allow you to create segments and arcs in the polyline using special constraints.
See the section called “Additional Status Codes” for details.
To create a smooth 3D shape, set all status values to 1. Use status = 0 to create a ridge.
Other values are reserved for future enhancements.

EXTRUDE
EXTRUDE n, dx, dy, dz, mask,
 x1, y1, s1,
 ...
 xn, yn, sn

x

y

z

j1

j2

j3

j5

j6

1

2

n

General prism using a polyline base in the x-y plane.

3D Shapes

GDL Reference Guide 72

The displacement vector between bases is (dx, dy, dz). This is a generalization of the PRISM command and the SLAB command. The base
polyline is not necessarily closed, as the lateral edges are not always perpendicular to the x-y plane. The base polyline may include holes, just
like PRISM_. It is possible to control the visibility of the contour edges.
n: the number of polyline nodes.
mask: controls the existence of the bottom, top and (in case of an open polyline) side polygon.
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1: base surface is present,
j2: top surface is present,
j3: side (closing) surface is present,
j5: base edges are visible,
j6: top edges are visible.
j7: cross-section edges are visible, surface is articulated,
j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering.

si: status of the lateral edges or marks the end of the polygon or of a hole. You can also define arcs and segments in the polyline using
additional status code values:
0: lateral edge starting from the node is visible,
1: lateral edges starting from the node are used for showing the contour,
-1: marks the end of the enclosing polygon or a hole, and means that the next node will be the first vertex of another hole.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.
Restriction of parameters:
n > 2

3D Shapes

GDL Reference Guide 73

Example 1:

EXTRUDE 14, 1, 1, 4, 1+2+4+16+32,
 0, 0, 0,
 1, -3, 0,
 2, -2, 1,
 3, -4, 0,
 4, -2, 1,
 5, -3, 0,
 6, 0, 0,
 3, 4, 0,
 0, 0, -1,
 2, 0, 0,
 3, 2, 0,
 4, 0, 0,
 3, -2, 0,
 2, 0, -1

3D Shapes

GDL Reference Guide 74

Example 2:

A=5: B=5: R=2: S=1: C=R-S : D=A-R : E=B-R
EXTRUDE 28, -1, 0, 4, 1+2+4+16+32,
 0, 0, 0,
 D+R*sin(0), R-R*cos(0), 1,
 D+R*sin(15), R-R*cos(15), 1,
 D+R*sin(30), R-R*cos(30), 1,
 D+R*sin(45), R-R*cos(45), 1,
 D+R*sin(60), R-R*cos(60), 1,
 D+R*sin(75), R-R*cos(75), 1,
 D+R*sin(90), R-R*cos(90), 1,
 A, B, 0,
 0, B, 0,
 0, 0, -1,
 C, C, 0,
 D+S*sin(0), R-S*cos(0), 1,
 D+S*sin(15), R-S*cos(15), 1,
 D+S*sin(30), R-S*cos(30), 1,
 D+S*sin(45), R-S*cos(45), 1,
 D+S*sin(60), R-S*cos(60), 1,
 D+S*sin(75), R-S*cos(75), 1,
 D+S*sin(90), R-S*cos(90), 1,
 A-C,B-C,0,
 R-S*cos(90), E+S*sin(90), 1,
 R-S*cos(75), E+S*sin(75), 1,
 R-S*cos(60), E+S*sin(60), 1,
 R-S*cos(45), E+S*sin(45), 1,
 R-S*cos(30), E+S*sin(30), 1,
 R-S*cos(15), E+S*sin(15), 1,
 R-S*cos(0), E+S*sin(0), 1,
 C, C, -1

PYRAMID
PYRAMID n, h, mask, x1, y1, s1, ..., xn, yn, sn

3D Shapes

GDL Reference Guide 75

x

y

z

j1

j3

j5
1

2

n

h

Pyramid based on a polyline in the x-y plane. The peak of the pyramid is located at (0, 0, h).
n: number of polyline nodes.
mask: controls the existence of the bottom and (in the case of an open polyline) side polygon.
mask = j1 + 4*j3 + 16*j5, where each j can be 0 or 1.
j1: base surface is present,
j3: side (closing) surface is present,
j5: base edges are visible.

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.
Restriction of parameters:
h > 0 and n > 2

3D Shapes

GDL Reference Guide 76

Example:

PYRAMID 4, 1.5, 1+4+16,
 -2, -2, 0,
 -2, 2, 0,
 2, 2, 0,
 2, -2, 0
PYRAMID 4, 4, 21,
 -1, -1, 0,
 1, -1, 0,
 1, 1, 0,
 -1, 1, 0
for i = 1 to 4 ! four peaks
 ADD -1.4, -1.4, 0
 PYRAMID 4, 1.5, 21,
 -0.25, -0.25, 0,
 0.25, -0.25, 0,
 0.25, 0.25, 0,
 -0.25, 0.25, 0
 DEL 1
 ROTZ 90
next i
del 4

REVOLVE
REVOLVE n, alpha, mask, x1, y1, s1, ..., xn, yn, sn

3D Shapes

GDL Reference Guide 77

j6

j1

j3

j2

j4

1

n

Z

2

Y

j5

alpha

Surface generated by rotating a polyline defined in the x-y plane around the x axis. The profile polyline cannot contain holes.
n: number of polyline nodes.
alpha: rotation angle in degrees
mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
j1: closing disc at first point is present,
j2: closing disc at last point is present,
j3: base closing side (in profile plane) is present,
j4: end closing side (in revolved plane) is present,
j5: base edges (in profile plane) are visible,
j6: end edges (in revolved plane) are visible,
j7: cross-section edges are visible, surface is articulated,
j8: horizontal edge in line elimination,
j9: vertical edge in line elimination.

si: status of the latitudinal arcs.
0: latitudinal arcs starting from the node are all visible,

3D Shapes

GDL Reference Guide 78

1: latitudinal arcs starting from the node are used for showing the contour,
2: when using ARCHICAD or Z-buffer Rendering Engine and setting Smooth Surfaces, the latitudinal edge belonging to this point defines
a break. This solution is equivalent to the definition of additional nodes. The calculation is performed by the compiler. With other rendering
methods, it has the same effect as using 0.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.
Restriction of parameters:
n >= 2
yi >= 0.0
yi = 0.0 and yi+1 = 0.0 cannot stand at the same time
(i.e., the y value of two neighboring nodes cannot be zero at the same time).

Example 1:

3D Shapes

GDL Reference Guide 79

ROTY -90
REVOLVE 22, 360, 1+64,
 0, 1.982, 0,
 0.093, 2, 0,
 0.144, 1.845, 0,
 0.220, 1.701, 0,
 0.318, 1.571, 0,
 0.436, 1.459, 0,
 0.617, 1.263, 0,
 0.772, 1.045, 0,
 0.896, 0.808, 0,
 0.987, 0.557, 0,
 1.044, 0.296, 0,
 1.064, 0.030, 0,
 1.167, 0.024, 0,
 1.181, 0.056, 0,
 1.205, 0.081, 0,
 1.236, 0.096, 0,
 1.270, 0.1, 0,
 1.304, 0.092, 0,
 1.333, 0.073, 0,
 1.354, 0.045, 0,
 1.364, 0.012, 0,
 1.564, 0, 0

3D Shapes

GDL Reference Guide 80

Example 2:

3D Shapes

GDL Reference Guide 81

workaround without status code 2: the same result with status code 2:
ROTY -90
REVOLVE 26, 180, 16+32,
 7, 1, 0,
 6.0001, 1, 1,
 6, 1, 0,
 5.9999, 1.0002, 1,
 5.5001, 1.9998, 1,
 5.5, 2, 0,
 5.4999, 1.9998, 1,
 5.0001, 1.0002, 1,
 5, 1, 0,
 4.9999, 1, 1,
 4.0001, 1, 1,
 4, 1, 0,
 3+cos(15), 1+sin(15), 1,
 3+cos(30), 1+sin(30), 1,
 3+cos(45), 1+sin(45), 1,
 3+cos(60), 1+sin(60), 1,
 3+cos(75), 1+sin(75), 1,
 3, 2, 1,
 3+cos(105), 1+sin(105), 1,
 3+cos(120), 1+sin(120), 1,
 3+cos(135), 1+sin(135), 1,
 3+cos(150), 1+sin(150), 1,
 3+cos(165), 1+sin(165), 1,
 2, 1, 0,
 1.9999, 1, 0,
 1, 1, 0

ROTY -90
REVOLVE 18, 180, 48,
 7, 1, 0,
 6, 1, 2,
 5.5, 2, 2,
 5, 1, 2,
 4, 1, 2,
 3+cos(15), 1+sin(15), 1,
 3+cos(30), 1+sin(30), 1,
 3+cos(45), 1+sin(45), 1,
 3+cos(60), 1+sin(60), 1,
 3+cos(75), 1+sin(75), 1,
 3, 2, 1,
 3+cos(105), 1+sin(105), 1,
 3+cos(120), 1+sin(120), 1,
 3+cos(135), 1+sin(135), 1,
 3+cos(150), 1+sin(150), 1,
 3+cos(165), 1+sin(165), 1,
 2, 1, 2,
 1, 1, 0

REVOLVE{2}
REVOLVE{2} n, alphaOffset, alpha, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn
Advanced version of REVOLVE. The profile polygon will always be closed and may have holes. The start angle and the face materials are
controllable.
alphaOffset: rotation start angle.

3D Shapes

GDL Reference Guide 82

alpha: rotation angle length in degrees, may be negative.
mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
j3: base closing side (in profile plane) is present,
j4: end closing side (in revolved plane) is present,
j5: base edges (in profile plane) are visible,
j6: end edges (in revolved plane) are visible,
j7: cross-section edges are visible, surface is articulated,
j8: horizontal edge in line elimination,
j9: vertical edge in line elimination.

sideMat: material of the closing faces.
mati: material of the face generated from the i-th edge.

REVOLVE{3}
REVOLVE{3} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn
REVOLVE{3} is an extension of the REVOLVE{2} command with the possibility of defining two snap position. During the revolution the
path of each point of the base polyline is a circular arc, which is approximated by a polyline. With REVOLVE{3} two snap location can be
defined where polyline exactly fits the circle. With REVOLVE{2} this two snap locations are at the beginning and the end of the revolution.
With REVOLVE{3} the end points are not necessarily on the circle but simply cut at end planes.
betaOffset: Angle defining the first snap location. The defined angle need not be in the range of revolution.
beta: Angle defining the second snap location relative to the first snap location. May be negative. The defined angle need not be in the

range of revolution.

3D Shapes

GDL Reference Guide 83

Example:

revolve{2} snap positions at ends revolve{3} custom snap positions

resol 8
revolve{2} 4,
 10, 335, ! alphaOffset, alpha
 444, 2,
 0, 4, 2, 2,
 3, 4, 2, 2,
 3, 6, 2, 2,
 0, 6, 2, 2
! reference circle
resol 72
revolve{2} 4,
 0, 360, ! alphaOffset, alpha
 444, 0,
 -0.01, 3.99, 2, 0,
 0, 3.99, 2, 0,
 0, 4, 2, 0,
 -0.01, 4, 2, 0

resol 8
revolve{3} 4,
 10, 335, ! alphaOffset, alpha
 67.5, 100, ! betaOffset, beta
 444, 2,
 0, 4, 2, 2,
 3, 4, 2, 2,
 3, 6, 2, 2,
 0, 6, 2, 2
! reference circle
resol 72
revolve{2} 4,
 0, 360, ! alphaOffset, alpha
 444, 0,
 -0.01, 3.99, 2, 0,
 0, 3.99, 2, 0,
 0, 4, 2, 0,
 -0.01, 4, 2, 0

3D Shapes

GDL Reference Guide 84

REVOLVE{4}
REVOLVE{4} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn
REVOLVE{4} is an extension of the REVOLVE{3} command with the possibility of hiding all edges.
mask: controls the existence of the bottom, top and (in the case of alpha < 360°) side polygons.
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9 + 512*j10 + 1024*j11, where
each j can be 0 or 1.
j3: base closing side (in profile plane) is present,
j4: end closing side (in revolved plane) is present,
j5: base edges (in profile plane) are visible,
j6: end edges (in revolved plane) are visible,
j7: cross-section edges are visible, surface is articulated,
j8: horizontal edge in line elimination,
j9: vertical edge in line elimination,
j10: hide all edges of revolve,
j11: side edge and surface is smooth in curved sections of the profile. Compatibility: introduced in ARCHICAD 21.

REVOLVE{5}
REVOLVE{5}n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn
REVOLVE{5} is an extension of the REVOLVE{4} command with the possibility of using inline material definition, that means materials
defined in GDL script locally also can be used next to materials defined in global material definitions.

RULED
RULED n, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xn, yn, zn

RULED{2}
RULED{2} n, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xn, yn, zn

3D Shapes

GDL Reference Guide 85

j3

j6
1

n

j2

j5
1

Z

2

n

X
j1

Y

2

RULED is a surface based on a planar curve and a space curve having the same number of nodes. The planar curve polyline cannot have any
holes. Straight segments connect the corresponding nodes of the two polylines.
This is the only GDL element allowing the neighboring nodes to overlap.
The second version, RULED{2}, checks the direction (clockwise or counterclockwise) in which the points of both the top polygon and base
polygon were defined, and reverses the direction if necessary. (The original RULED command takes only the base polygon into account, which
can lead to errors.)
n: number of polyline nodes in each curve.
ui, vi: coordinates of the planar curve nodes.
xi, yi, zi: coordinates of the space curve nodes.
mask: controls the existence of the bottom, top and side polygon and the visibility of the edges on the generator polylines. The side polygon

connects the first and last nodes of the curves, if any of them are not closed.
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: base surface is present,
j2: top surface is present (not effective if the top surface is not planar),

3D Shapes

GDL Reference Guide 86

j3: side surface is present (a planar quadrangle or two triangles),
j5: edges on the planar curve are visible,
j6: edges on the space curve are visible,
j7: edges on the surface are visible, surface is not smooth.

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.

Restriction of parameters:
n > 1

3D Shapes

GDL Reference Guide 87

Example:

R=3
RULED 16, 1+2+4+16+32,
 cos(22.5)*R, sin(22.5)*R, 0,
 cos(45)*R, sin(45)*R, 0,
 cos(67.5)*R, sin(67.5)*R, 0,
 cos(90)*R, sin(90)*R, 0,
 cos(112.5)*R, sin(112.5)*R, 0,
 cos(135)*R, sin(135)*R, 0,
 cos(157.5)*R, sin(157.5)*R, 0,
 cos(180)*R, sin(180)*R, 0,
 cos(202.5)*R, sin(202.5)*R, 0,
 cos(225)*R, sin(225)*R, 0,
 cos(247.5)*R, sin(247.5)*R, 0,
 cos(270)*R, sin(270)*R, 0,
 cos(292.5)*R, sin(292.5)*R, 0,
 cos(315)*R, sin(315)*R, 0,
 cos(337.5)*R, sin(337.5)*R, 0,
 cos(360)*R, sin(360)*R, 0,
 cos(112.5)*R, sin(112.5)*R, 10,
 cos(135)*R, sin(135)*R, 10,
 cos(157.5)*R, sin(157.5)*R, 10,
 cos(180)*R, sin(180)*R, 10,
 cos(202.5)*R, sin(202.5)*R, 10,
 cos(225)*R, sin(225)*R, 10,
 cos(247.5)*R, sin(247.5)*R, 10,
 cos(270)*R, sin(270)*R, 10,
 cos(292.5)*R, sin(292.5)*R, 10,
 cos(315)*R, sin(315)*R, 10,
 cos(337.5)*R, sin(337.5)*R, 10,
 cos(360)*R, sin(360)*R, 10,
 cos(22.5)*R, sin(22.5)*R, 10,
 cos(45)*R, sin(45)*R, 10,
 cos(67.5)*R, sin(67.5)*R, 10,
 cos(90)*R, sin(90)*R, 10

3D Shapes

GDL Reference Guide 88

RULEDSEGMENTED
RULEDSEGMENTED n, mask,
 x11, y11, z11, s1,..., x1n, y1n, z1n, sn,
 x21, y21, z21, ..., x2n, y2n, z2n
Compatibility: introduced in ARCHICAD 21.
RULEDSEGMENTED creates a surface based on two arbitrary-shaped polyline in 3D space. The two polylines must consist of the same
number of vertices. It generates a sequence of doubly ruled surfaces, like RULED, but with less restriction on input polylines and with a
subdivision of better quality.
Corresponding vertices of the two profiles are connected with straight lines. Corresponding pair of skew segments of the profiles are connected
by a doubly ruled surface (mathematically hyperbolic paraboloid), with segmentation in both directions, resulting much smoother renderings
and cross-sections.
Conditions of profile polylines:
• both are 3D polylines, does not need to be coplanar
• each may be closed but, neither may contain holes
• each may contain identical vertices, even multiple consecutive ones resulting in fan-shaped surface
• if a profile polyline is closed and coplanar, closing polygon can be generated
n: number of polyline nodes in each curve.
x1i, y1i, z1i: 3D positions of vertices on first profile polyline.
x2i, y2i, z2i: 3D positions of vertices on second profile polyline.
mask: controls the existence of the bottom, top and side polygon and the visibility of the edges on the generator polylines. The side polygon

connects the first and last nodes of the curves, if any of them are not closed.
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: base surface is present (not effective if the first polyline is not coplanar and j3 is not set),
j2: top surface is present (not effective if the second polyline is not coplanar and j3 is not set),
j3: closing side surface is present (surface on additional segments between the last and first nodes),
j5: edges on the first profile polyline are visible,
j6: edges on the second profile polyline are visible,
j7: edges on the surface are visible, surface is not smooth.

si: status of the generatrices (lateral edges between one node on first profile polyline and corresponding node on second polyline).
0: generatrix is visible,
1: generatrix is used for showing the contour,

3D Shapes

GDL Reference Guide 89

2: generatrix visible and defines a break in rendering.
Restriction of parameters:
n > 1

Example:

RULEDSEGMENTED 4, 16+32,
 0, 0, 0, 2,
 1, 0, 0, 2,
 1, 1, 0, 2,
 1, 1, 1, 2,
 0, 0, 1,
 0, 1, 1,
 0, 1, 2,
 1, 2, 2

RULEDSEGMENTED{2}
RULEDSEGMENTED{2} top_material, bottom_material,
 n, mask, textureMode,
 x11, y11, z11, s1, mat1..., x1n, y1n, z1n, sn, matn,
 x21, y21, z21, ..., x2n, y2n, z2n
Compatibility: introduced in ARCHICAD 23.
RULEDSEGMENTED{2} is an extension of the RULEDSEGMENTED command with the possibility of controlling the surface attributes
of the generated surfaces in segment detail and applying custom texture projection.
Additional parameters:
top_material: surface attribute index of the base surface (if the first polyline is coplanar and j1+j3 are set).
bottom_material: surface attribute index of the top surface (if the second polyline is coplanar and j2+j3 are set).
textureMode: texture projection mode
0: automatic, optimized for curved surfaces, the same as with the RULEDSEGMENTED command.
1: custom, defined by the COOR command.

mati: surface attribute index of generated surface segment i.

3D Shapes

GDL Reference Guide 90

Example:

_topMatIndex = 22
_bottomMatIndex = 34
_segmentMatIndex_1 = 55
_segmentMatIndex_2 = 44

RULEDSEGMENTED{2} _topMatIndex, _bottomMatIndex,
 4, 1+2+16+32, 0,
 0, 0, 0, 2, _segmentMatIndex_1,
 1, 0, 0, 2, _segmentMatIndex_2,
 1, 1, 0, 2, _segmentMatIndex_1,
 0, 1, 0, 2, _segmentMatIndex_2,
 1, 0, 1,
 1, 1, 1,
 0, 1, 1,
 0, 0, 1

SWEEP
SWEEP n, m, alpha, scale, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xm, ym, zm
Surface generated by a polyline sweeping along a polyline space curve path.
The plane of the polyline follows the path curve. The space curve has to start from the x-y plane. If this condition is not met, it is moved
along the z axis to start on the x-y plane.
The cross-section at point (xi, yi, zi) is perpendicular to the space curve segment between points (xi-1, yi-1, zi-1) and (xi, yi, zi).
SWEEP can be used to model the spout of a teapot and other complex shapes.
n: number of polyline nodes.
m: number of path nodes.
alpha: incremental polyline rotation on its own plane, from one path node to the next one.
scale: incremental polyline scale factor, from one path node to the next one.
ui, vi: coordinates of the base polyline nodes.
xi, yi, zi: coordinates of the path curve nodes.

3D Shapes

GDL Reference Guide 91

mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = j1 + 2*j2 + 4*j3 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: base surface is present,
j2: top surface is present,
j3: side surface is present,
j5: base edges are visible,
j6: top edges are visible,
j7: cross-section edges are visible, surface is articulated.

x

y

z

1

2

n j1

j3

j5

j2
j6

1

2

m

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.
Restriction of parameters:

3D Shapes

GDL Reference Guide 92

n > 1
m > 1
z1 < z2

Example:

SWEEP 4, 12, 7.5, 1, 1+2+4+16+32,
 -0.5, -0.25, 0,
 0.5, -0.25, 0,
 0.5, 0.25, 0,
 -0.5, 0.25, 0,
 0, 0, 0.5,
 0, 0, 1,
 0, 0, 1.5,
 0, 0, 2,
 0, 0, 2.5,
 0, 0, 3,
 0, 0, 3.5,
 0, 0, 4,
 0, 0, 4.5,
 0, 0, 5,
 0, 0, 5.5,
 0, 0, 6

3D Shapes

GDL Reference Guide 93

TUBE
TUBE n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,
 x1, y1, z1, angle1,
 ...
 xm, ym, zm, anglem
Surface generated by a polyline sweeping along a space curve path without distortion of the generating cross-section. The internal connection
surfaces are rotatable in the U-W plane of the instantaneous U-V-W coordinate system.
V axis: approximates the tangent of the generator curve at the corresponding point.
W axis: perpendicular to the V axis and pointing upward with respect to the local z axis.
U axis: perpendicular to the V and W axes and forms with them a right-hand sided Cartesian coordinate system.
If the V axis is vertical, then the W direction is not correctly defined. The W axis in the previous path node is used for determining a horizontal
direction.
The cross-section polygon of the tube measured at the middle of the path segments is always equal to the base polygon (u1, w1, ..., un, wn).
Section polygons in joints are situated in the bisector plane of the joint segments. The base polygon must be closed.
n: number of the polyline nodes.
m: number of the path nodes.
ui, wi: coordinates of the base polyline nodes.
xi, yi, zi: coordinates of the path curve nodes.
anglei: rotation angle of the cross-section.
mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 512*j10 + 1024*j11 + 2048*j12 + 4096*j13,
where each j can be 0 or 1.
j1: base surface is present,
j2: end surface is present,
j5: base edges (at x2, y2, z2) are visible,
j6: end edges (at xm-1, ym-1, zm-1) are visible,
j7: cross-section edges are visible, surface is articulated,

3D Shapes

GDL Reference Guide 94

j8: cross-section edges are sharp, the surface smoothing will stop here in OpenGL and rendering,
j10: base edges participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j11: end edges participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j12: longitudinal edges (which connect cross sections) participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j13: edges of cross sections participate in line elimination (Compatibility: introduced in ARCHICAD 23.).

W

U

W
m

m-1

2
1

alpha

V

U

si: status of the lateral edges.
0: lateral edges starting from the node are all visible,
1: lateral edges starting from the node are used for showing the contour.
2: when using ARCHICAD or Z-buffer Rendering Engine and setting Smooth Surfaces, the lateral edge belonging to this point defines a
break. This solution is equivalent to the definition of additional nodes. The calculation is performed by the compiler. With other rendering
methods, it has the same effect as using 0.

Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.

Note: The path comprises two points more than the number of generated sections. The first and the last points determine the position in
space of the first and the last surfaces belonging to the TUBE. These points only play a role in determining the normal of the surfaces, they
are not actual nodes of the path. The orientation of the surfaces is the same as that of the surfaces that would be generated at the nodes
nearest to the two endpoints, if the TUBE were continued in the directions indicated by these.

Restriction of parameters:
n > 2 and m > 3

3D Shapes

GDL Reference Guide 95

Example 1:

TUBE 4, 18, 16+32,
 2.0, 0.0, 0,
 0.0, 0.0, 0,
 0.0, 0.4, 0,
 2.0, 0.4, 0,
 -1, 0, 0, 0,
 0, 0, 0, 0,
 4, 0, 0.1, 0,
 6, 0, 0.15, 0,
 6+4*sin(15), 4 - 4*cos(15), 0.2, 0,
 6+4*sin(30), 4 - 4*cos(30), 0.25, 0,
 6+4*sin(45), 4 - 4*cos(45), 0.3, 0,
 6+4*sin(60), 4 - 4*cos(60), 0.35, 0,
 6+4*sin(75), 4 - 4*cos(75), 0.4, 0,
 10, 4, 0.45, 0,
 6+4*sin(105), 4 - 4*cos(105), 0.5, 0,
 6+4*sin(120), 4 - 4*cos(120), 0.55, 0,
 6+4*sin(135), 4 - 4*cos(135), 0.6, 0,
 6+4*sin(150), 4 - 4*cos(150), 0.65, 0,
 6+4*sin(165), 4 - 4*cos(165), 0.7, 0,
 6, 8, 0.75, 0,
 0, 8, 1, 0,
 -1, 8, 1, 0

3D Shapes

GDL Reference Guide 96

Example 2:

TUBE 14, 6, 1+2+16+32,
 0, 0,0,
 0.03, 0,0,
 0.03, 0.02, 0,
 0.06, 0.02, 0,
 0.05, 0.0699, 0,
 0.05, 0.07, 1,
 0.05, 0.15, 901,
 1, 0, 801,
 0.08, 90, 2000,
 0.19, 0.15, 0,
 0.19, 0.19, 0,
 0.25, 0.19, 0,
 0.25, 0.25, 0,
 0, 0.25, 0,
 0, 1, 0, 0,
 0, 0.0001, 0, 0,
 0, 0, 0, 0,
 -0.8, 0, 0, 0,
 -0.8, 0.0001, 0, 0,
 -0.8, 1, 0, 0

3D Shapes

GDL Reference Guide 97

Example 3:

TUBE 3, 7, 16+32,
 0, 0, 0,
 -0.5, 0, 0,
 0, 0.5, 0,
 0.2, 0, -0.2, 0,
 0, 0, 0, 0,
 0, 0, 5, 0,
 3, 0, 5, 0,
 3, 4, 5, 0,
 3, 4, 0, 0,
 3, 3.8, -0.2, 0

TUBE{2}
TUBE{2} top_material, bottom_material, cut_material,
 n, m, mask,
 u1, w1, s1, mat1,
 ...
 un, wn, sn, matn,
 x1, y1, z1, angle1,
 ...
 xm, ym, zm, anglem
Compatibility: introduced in ARCHICAD 21. Extended version of the TUBE command:
• holes can be defined within the contour base polygon
• individual surfaces attribute for top, bottom polygons and cut areas
• individual surface attribute for side polygons belonging to the same base polygon edge
V axis, W axis, U axis: same meaning as in the TUBE command.

3D Shapes

GDL Reference Guide 98

top_material: surface of the closing polygon.
bottom_material: surface of the starting polygon.
cut_material: surface of the cut areas.
n, m, ui, wi: same meaning as in the TUBE command.
xi, yi, zi, anglei: same meaning as in the TUBE command. Path can not contain arcs (segmentation is manual).
mask: controls the existence of the bottom and top polygons’ surfaces and edges.
mask = j1 + 2*j2 + 16*j5 + 32*j6 + 256*j9 + 512*j10 + 1024*j11 + 2048*j12 + 4096*j13, where
each j can be 0 or 1.
j1: base surface is present,
j2: end surface is present,
j5: base edges (at x2, y2, z2) are visible,
j6: end edges (at xm-1, ym-1, zm-1) are visible,
j9: side edge and surface is smooth in curved sections of the profile,
j10: base edges participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j11: end edges participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j12: longitudinal edges (which connect cross sections) participate in line elimination (Compatibility: introduced in ARCHICAD 23.),
j13: edges of cross sections participate in line elimination (Compatibility: introduced in ARCHICAD 23.).

si: status of the lateral edges.
-1: indicates the last node of a hole within the base polygon (duplicated first node of the hole), or the closing node of the outside polygon
in case of a base polygon containing holes. The matn parameter is ignored in these duplicated nodes with status -1,
0, 1, 2: same meaning as in the TUBE command.

mati: individual surface of the side polygons belonging to the edge starting from ui, wi node of the base polygon.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints. Such polygon edges are
automatically segmented during processing.

3D Shapes

GDL Reference Guide 99

Example:

matEnds1 = 12
matEnds2 = 24
matCut = 15
matOuter = 10
matInner = 13

TUBE{2} matEnds1, matEnds2, matCut,
 10, 4, 1 + 2 + 16 + 32,

 ! outside contour
 -0.01, 0.01, 0, matOuter,
 -0.01, -0.01, 0, matOuter,
 0.01, -0.01, 0, matOuter,
 0.01, 0.01, 0, matOuter,
 -0.01, 0.01, -1, matOuter,

 ! hole contour
 -0.008, 0.008, 0, matInner,
 -0.008, -0.008, 0, matInner,
 0.008, -0.008, 0, matInner,
 0.008, 0.008, 0, matInner,
 -0.008, 0.008, -1, matInner,

 ! path
 0, 0, -1, 45,
 0, 0, 0, 45,
 0, 0, 1, 45,
 0, 0, 2, 45

TUBEA
TUBEA n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,
 x1, y1, z1,
 ...
 xm, ym, zm

3D Shapes

GDL Reference Guide 100

bisector plane

1
2

m-1 m

1

n

TUBEA is a surface generated by a polyline sweeping along a space curve path with a different algorithm than that of the TUBE command.
The section polygon generated in each joint of the path curve is equal with the base polygon (u1, w1, ..., un, wn) and is situated in the bisector
plane of the projections of the joint segments to the local x-y plane. The base polygon can be opened: in this case the section polygons will
be generated to reach the local x-y plane as in the case of REVOLVE surfaces.
The cross section of the tube measured at the middle of the path segments can be different from the base polygon.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

3D Shapes

GDL Reference Guide 101

Example:

TUBEA 9, 7, 1 + 2 + 16 + 32,
 -1, 1, 0,
 0, 2, 0,
 0.8, 2, 0,
 0.8, 1.6, 0,
 0.8001, 1.6, 1,
 3.2, 1.6, 0,
 3.2, 2, 0,
 4, 2, 0,
 5, 1, 0,
 0, -7, 0,
 0, 0, 0,
 4, 0, 1,
 9, 3, 2.25,
 9, 10, 2.25,
 14, 10, 2.25,
 20, 15, 5

3D Shapes

GDL Reference Guide 102

COONS
COONS n, m, mask,
 x11, y11, z11, ..., x1n, y1n, z1n,
 x21, y21, z21, ..., x2n, y2n, z2n,
 x31, y31, z31, ..., x3m, y3m, z3m,
 x41, y41, z41, ..., x4m, y4m, z4m
A Coons patch generated from four boundary curves.
mask:
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j3: edges of the 1st boundary (x1, y1, z1) are visible (effective only if j7 is set),
j4: edges of the 2nd boundary (x2, y2, z2) are visible (effective only if j7 is set),
j5: edges of the 3rd boundary (x3, y3, z3) are visible (effective only if j7 is set),
j6: edges of the 4th boundary (x4, y4, z4) are visible (effective only if j7 is set),
j7: edges on surface are visible, surface is not smooth.
In case the edges on the surface are invisible (bit j7 is set to zero), all boundary edges become visible, with the bits j3-j6 becoming ineffective.
To define boundary edge visibility independent of surface edge visibility, use the COONS{2} command.

4(m)

2(n)

3(m)

1(n)

Z

Y

X

The orientation of the boundaries is obligatory: curves 1 and 2 must go from curve 3 towards 4, and curves 3 and 4 must go from curve 1
towards 2. The corner coordinates have to be the same in the respective curves.
Restriction of parameters:
n > 1, m > 1

3D Shapes

GDL Reference Guide 103

Example 1:

COONS 6, 6, 4+8+16+32+64,
 ! 1st boundary, n=6
 0, 0, 5,
 1, 0, 4,
 2, 0, 3,
 3, 0, 2,
 4, 0, 1,
 5, 0, 0,
 ! 2nd boundary, n=6
 0, 5, 0,
 1, 5, 1,
 2, 5, 2,
 3, 5, 3,
 4, 5, 4,
 5, 5, 5,
 ! 3rd boundary, m=6
 0, 0, 5,
 0, 1, 4,
 0, 2, 3,
 0, 3, 2,
 0, 4, 1,
 0, 5, 0,
 ! 4th boundary, m=6
 5, 0, 0,
 5, 1, 1,
 5, 2, 2,
 5, 3, 3,
 5, 4, 4,
 5, 5, 5

3D Shapes

GDL Reference Guide 104

Example 2:

COONS 7, 6, 4+8+16+32+64,
 ! 1st boundary, n=7
 1, 2, 0,
 0.5, 1, 0,
 0.2, 0.5, 0,
 -0.5, 0, 0,
 0.2, -0.5, 0,
 0.5, -1, 0,
 1, -2, 0,
 ! 2nd boundary, n=7
 6, 10, -2,
 6.5, 4, -1.5,
 5, 1, -1.2,
 4, 0, -1,
 5, -1, -1.2,
 6.5, -4, -1.5,
 6, -10, -2,
 ! 3rd boundary, m=6
 1, 2, 0,
 2, 4, -0.5,
 3, 6, -1,
 4, 8, -1.5,
 5, 9, -1.8,
 6, 10, -2,
 ! 4th boundary, m=6
 1, -2, 0,
 2, -4, -0.5,
 3, -6, -1,
 4, -8, -1.5,
 5, -9, -1.8,
 6, -10, -2

3D Shapes

GDL Reference Guide 105

COONS{2}
COONS{2} n, m, mask,
 x11, y11, z11, ..., x1n, y1n, z1n,
 x21, y21, z21, ..., x2n, y2n, z2n,
 x31, y31, z31, ..., x3m, y3m, z3m,
 x41, y41, z41, ..., x4m, y4m, z4m
COONS{2} is an extension of the the COONS command with the possibility of setting the visibility of surface and boundary edges
independently.
mask:
mask = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j3: edges of the 1st boundary (x1, y1, z1) are visible,
j4: edges of the 2nd boundary (x2, y2, z2) are visible,
j5: edges of the 3rd boundary (x3, y3, z3) are visible,
j6: edges of the 4th boundary (x4, y4, z4) are visible,
j7: edges on surface are visible, surface is not smooth.

MASS
MASS top_material, bottom_material, side_material,
 n, m, mask, h,
 x1, y1, z1, s1,
 ...
 xn, yn, zn, sn,
 xn+1, yn+1, zn+1, sn+1,
 ...
 xn+m, yn+m, zn+m, sn+m
The equivalent of the shape generated by the Mesh tool in ARCHICAD.
top_material, bottom_material, side_material: name/index of the top, bottom and side materials.
n: the number of nodes in the mass polygon.
m: the number of nodes on the ridges.
h: the height of the skirt (can be negative).
xi, yi, zi: the coordinates of the nodes.
mask:

3D Shapes

GDL Reference Guide 106

mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1: base surface is present,
j3: side surfaces are present,
j5: base and side edges are visible,
j6: triangulation edges are visible,
j7: triangulation edges are visible, top surface is not smooth,
j8: all ridges will be sharp, but the surface is smooth.

i

n

m
1

Y

Zij

1

Z

X

j
b

a

si: similar to the PRISM_ command. Additional status codes allow you to create segments and arcs in the planar polyline using special
constraints.

See the section called “Additional Status Codes” for details.
Restriction of parameters:
n >= 3, m >= 0

3D Shapes

GDL Reference Guide 107

Example:

MASS "Surf-White", "Surf-White", "Surf-White",
 15, 12, 117, -5.0,
 0, 12, 0, 15,
 8, 12, 0, 15,
 8, 0, 0, 15,
 13, 0, 0, 13,
 16, 0, 0, 13,
 19, 0, 0, 13,
 23, 0, 0, 13,
 24, 0, 0, 15,
 24, 12, 0, 15,
 28, 12, 0, 15,
 28, 20, 8, 13,
 28, 22, 8, 15,
 0, 22, 8, 15,
 0, 20, 8, 13,
 0, 12, 0, -1,
 0, 22, 8, 0,
 28, 22, 8, -1,
 23, 17, 5, 0,
 23, 0, 5, -1,
 13, 13, 1, 0,
 13, 0, 1, -1,
 16, 0, 7, 0,
 16, 19, 7, -1,
 0, 20, 8, 0,
 28, 20, 8, -1,
 19, 17, 5, 0,
 19, 0, 5, -1

3D Shapes

GDL Reference Guide 108

MASS{2}
MASS{2} top_material, bottom_material, side_material,
 n, m, mask, h,
 x1, y1, z1, s1,
 ...
 xn, yn, zn, sn,
 xn+1, yn+1, zn+1, sn+1,
 ...
 xn+m, yn+m, zn+m, sn+m
Extension of the MASS command with an additional mask bit and the possibility of hiding all top edges of the mass.
mask:
mask = j1 + 4*j3 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9 + 512*j10, where each j can be 0 or 1.
j1: base surface is present,
j3: side surfaces are present,
j5: base and side edges are visible,
j6: top edges are visible,
j7: top edges are visible, top surface is not smooth,
j8: all ridges will be sharp, but the surface is smooth.
j9: edges participate in line elimination.
j10: all top edges will be hidden.

3D Shapes

GDL Reference Guide 109

Example:

PEN 1
mat = IND (MATERIAL, "Metal-Aluminium")
FOR i=1 TO 2 STEP 1
 MASS{2} mat, mat, mat,
 5, 0, 1+4+16+32+64+256, -1,
 0, 0, 0, 15,
 2, 0, 0, 15,
 2, 2, 0, 15,
 0, 2, 0, 15,
 0, 0, 0, -1
 BODY -1
 ADDX 2
NEXT i

POLYROOF
POLYROOF defaultMat, k, m, n,
 offset, thickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n
The command creates a possibly multi-level roof in which the geometry is controlled by multiple parameters, most importantly the roof angles
and two polygons: a pivot polygon and a contour polygon. At the pivot polygon, the roof is slanted at the roof angle. It ascends until it either

3D Shapes

GDL Reference Guide 110

reaches the height of the next level or until it is eliminated by its sides encountering one another. It also descends downwards, until it reaches
the contour polygon, which cuts off parts of the roof outside of it. The contour polygon can also be used to cut holes in the roof.
defaultMat: the numeric index of the "inner" material of the roof. This material becomes visible at gables and at cut surfaces, e.g., if

the roof is cut by a plane.
k: the number of levels.
m: the number of pivot polygon vertices.
n: the number of contour polygon vertices.
offset: an offset for the thickness of the roof.
thickness: the thickness of the roof.
applyContourInsidePivot: if set to 0, the outer contour polygon is only applied below the pivot polygon plane. If set to 1, the

outer contour polygon is applied both above and below the pivot polygon plane. The 0 setting may be used to prevent the contour polygon
from cutting off gables that lean outwards.

z_i: the Z coordinate of a level.
pivotX_i, pivotY_i: coordinates of the pivot polygon vertices.
pivotMask_i:
0: marks a normal vertex,
-1: marks the end of the current pivot subpolygon (outer contour or hole). Data for such a vertex must be a copy of the data for the first
vertex of the subpolygon. A polygon must always be closed with a mask value of -1, even if there are no holes inside it.

roofAngle_i: angle of slant for a pivot edge on a given level. If the angle >= 90, that part of the roof becomes a gable.
gableOverhang_i: at the sides of a gable, the roof can extend over a lower level of itself. The amount of this can be controlled by this

parameter, which has effect only on gables (roofAngle >= 90) that are at least on the second level of the roof.
topMat_i, bottomMat_i: the numeric index of the materials for the top and bottom of the roof.
contourX_i, contourY_i: coordinates of the contour polygon vertices.
contourMask_i:
0: marks a normal vertex,
-1: marks the end of the current contour subpolygon (outer contour or hole). Data for such a vertex must be a copy of the data for the
first vertex of the subpolygon. A polygon must always be closed with a mask value of -1, even if there are no holes inside it.

edgeTrim_i: specifies the way the edge is trimmed by the contour polygon. Possible values are:
0: Vertical,

3D Shapes

GDL Reference Guide 111

1: Perpendicular to roof plane,
2: Horizontal,
3: Custom angle to roof plane.

edgeAngle_i: the custom angle of the edge to the roof plane. It has effect only if edgeTrim is set to 3 (custom angle to roof plane).
edgeMat_i: numeric index of the material at the edge the roof, where the contour cuts it

 defaultEdgeMat

 bottomMat
42

 bottomMat
41

 topMat
22

 topMat
21

 sideMat
2 gableOverhang

12

 topMat
11

 edgeMat
1

Figure 1: Materials

3D Shapes

GDL Reference Guide 112

 roofAngle
22

 roofAngle
21

 edgeAngle
4

Figure 2: Angles

3D Shapes

GDL Reference Guide 113

Example:
POLYROOF "Paint-01",
 2, 5, 5,
 0, 0.2, 0,
 ! Start of z values
 2.7,
 3.2,
 ! Start of pivot polygon
 2, 8, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
 2, 3, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 10, 3, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 10, 8, 0,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 65, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 2, 8, -1,
 45, 0, ind(material, "Paint-01"), ind(material, "Paint-01"),
 90, 0.5, ind(material, "Paint-01"), ind(material, "Paint-01"),
 ! Start of contour polygon
 1.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
 1.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
 10.5, 2.5, 0, 0, 0, ind(material, "Paint-01"),
 10.5, 8.5, 0, 0, 0, ind(material, "Paint-01"),
 1.5, 8.5, -1, 0, 0, ind(material, "Paint-01")
Output: see Figure 1

3D Shapes

GDL Reference Guide 114

POLYROOF{2}
POLYROOF{2} defaultMat, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n
POLYROOF{2} is an extension of the POLYROOF command with the possibility of defining the total thickness of the roof. This parameter
should be considered together with offset and thickness, when the generation of a slice of the roof is desirable. In this case the thickness and
the offset should be set to the thickness of the slice and to the distance between the top planes of the slice and the complete roof respectively.
totalThickness: the total thickness of the roof.

POLYROOF{3}
POLYROOF{3} defaultMat, mask, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

3D Shapes

GDL Reference Guide 115

POLYROOF{3} is an extension of the POLYROOF{2} command with the possibility of controlling the global behavior of the generated roof.
mask: controls the global behavior of the generated roof.
mask = j1 + 2*j2, where each j can be 0 or 1.
j1: edges participate in line elimination.
j2: Make all edges invisible.

3D Shapes

GDL Reference Guide 116

Example:

pen 1
mat = IND (MATERIAL, "Metal-Aluminium")
a = -0.4242640691048 : b = 4.424264068326
c = 6.424264068326
POLYROOF{3} mat,1, 2, 5, 5,
 0, 0.3, 0.3, 1, 0, 1,
 a, b, 0, 45, 0, mat, mat, 90, 0, mat, mat,
 a, a, 0, 45, 0, mat, mat, 90, 0, mat, mat,
 c, a, 0, 45, 0, mat, mat, 90, 0, mat, mat,
 c, b, 0, 45, 0, mat, mat, 90, 0, mat, mat,
 a, b, -1,45, 0, mat, mat, 90, 0, mat, mat,
 -0.8, -0.8, 0, 2, 0, mat,
 6.8, -0.8, 0, 2, 0, mat,
 6.8, 4.8, 0, 2, 0, mat,
 -0.8, 4.8, 0, 2, 0, mat,
 -0.8, -0.8, -1, 2, 0, mat

a = 0.1514718617904 : b = 3.848528136652
c = 5.848528136652 : q = 0.5757359305057
w = 5.424264067936 : e = 3.424264056692
POLYROOF{3} mat,1, 1, 5, 5,
 0, 0.3, 0.3, 1, 0.5757359312847,
 a, b, 0, 45, 0, mat, mat,
 a, a, 0, 45, 0, mat, mat,
 c, a, 0, 45, 0, mat, mat,
 c, b, 0, 45, 0, mat, mat,
 a, b, -1, 45, 0, mat, mat,
 q, q, 0, 0, 0, mat,
 w, q, 0, 0, 0, mat,
 w, e, 0, 0, 0, mat,
 q, e, 0, 0, 0, mat,
 q, q, -1, 0, 0, mat

3D Shapes

GDL Reference Guide 117

POLYROOF{4}
POLYROOF{4} defaultMat, mask, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n
POLYROOF{4} is an extension of the POLYROOF{3} command with the possibility of using inline material definition, that means materials
defined in GDL script locally also can be used next to materials defined in global material definitions.

EXTRUDEDSHELL
EXTRUDEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
Surface created by first extruding a polyline, then adding thickness to it.
topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides

of the object.
defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut surfaces, e.g., if the object

is cut by a plane.

3D Shapes

GDL Reference Guide 118

n: number of profile base polyline vertices.
offset: an offset for the thickness of the shell. Cannot be negative.
thickness: the thickness of the shell.
flipped:
1: if the shell should be flipped,
0: otherwise.

trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise.

x_tb, y_tb, x_te, y_te, topz, tangle: Specify the top plane of the extrusion. The meaning of the parameters is the same
as for the SPRISM_{2} command.

x_bb, y_bb, x_be, y_be, bottomz, bangle: Specify the bottom plane of the extrusion. The meaning of the parameters
is the same as for the SPRISM_{2} command.

preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.
x_i, y_i, s_i: X and Y coordinates and status values for the base profile polyline. See the EXTRUDE command for details. The

visibility of the sides cannot be controlled with the status.

EXTRUDEDSHELL{2}
EXTRUDEDSHELL{2} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
EXTRUDEDSHELL{2} is an extension of the EXTRUDEDSHELL command with the possibility of hiding edges between original and
thickened surface.
status: Status bits:

3D Shapes

GDL Reference Guide 119

status = j1, where each j can be 0 or 1.
j1: Make edges invisible between original and thickened surface.

Example:

EXTRUDEDSHELL "Paint-02", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 3, 0.00, 0.30, 0, 0,
 ! 2 slant planes
 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
 0.00, 0.00, 0.00, 1.00, -10.00, 0.00,
 ! transformation matrix
 0.00, 0.00, 1.00, 0.00,
 1.00, 0.00, 0.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 ! profile polyline
 2.00, 0.00, 15,
 0.00, 2.00, 15,
 -2.00, 0.00, 15

3D Shapes

GDL Reference Guide 120

EXTRUDEDSHELL{3}
EXTRUDEDSHELL{3} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
EXTRUDEDSHELL{3} is an extension of the EXTRUDEDSHELL{2} command with the possibility of using inline material definition, that
means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

REVOLVEDSHELL
REVOLVEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
Surface created by rotating a polyline defined in the x-y plane around the x axis, then adding thickness to it.
topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides

of the object.
defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut surfaces, e.g., if the object

is cut by a plane.
n: number of profile base polyline vertices.
offset: an offset for the thickness of the shell. Cannot be negative.
thickness: the thickness of the shell.
flipped:

3D Shapes

GDL Reference Guide 121

1: if the shell should be flipped,
0: otherwise.

trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise.

alphaOffset: the sweep start angle.
alpha: the sweep angle length in degrees, may be negative.
preThickenTran_i: a transformation executed before thickening. See the XFORM command for the meaning of parameters.
x_i, y_i, s_i: X and Y coordinates and status values for the base profile polyline. See the EXTRUDE command for details. The

visibility of the sides cannot be controlled with the status.

REVOLVEDSHELL{2}
REVOLVEDSHELL{2} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
REVOLVEDSHELL{2} is an extension of the REVOLVEDSHELL command with the possibility of hiding edges of surfaces, and edges
between original and thickened surface.
status: Status bits:
status = j1 + 2*j2, where each j can be 0 or 1.
j1: Make edges invisible between original and thickened surface.
j2: Make edges invisible on surfaces.

3D Shapes

GDL Reference Guide 122

Example:
REVOLVEDSHELL "Paint-02", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 "Surf-Stucco Yellow", "Surf-Stucco Yellow",
 2, 0.00, 0.30, 0, 0, 0.00, 270.00,
 ! transformation matrix
 0.00, 0.00, -1.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 1.00, 0.00, 0.00, 0.00,
 ! profile polyline
 4.00, 0.00, 2,
 0.00, 4.00, 2

3D Shapes

GDL Reference Guide 123

REVOLVEDSHELL{3}
REVOLVEDSHELL{3} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
REVOLVEDSHELL{3} is an extension of the REVOLVEDSHELL{2} command with the possibility of using inline material definition, that
means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

REVOLVEDSHELLANGULAR
REVOLVEDSHELLANGULAR topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
An angular variant of the REVOLVEDSHELL command. Parameters are the same with the addition of the following extra parameters:
segmentationType: Must be either 1 or 2.
1: means that 360 degrees of revolution is split into nOfSegments segments,
2: means that the actual revolution angle (given by the alpha parameter) is split into nOfSegments segments.

nOfSegments: Number of segments, see segmentationType parameter above.

3D Shapes

GDL Reference Guide 124

REVOLVEDSHELLANGULAR{2}
REVOLVEDSHELLANGULAR{2} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n
REVOLVEDSHELLANGULAR{2} is an extension of the REVOLVEDSHELLANGULAR command with the possibility of hiding edges
of surfaces, and edges between original and thickened surface.
status: Status bits:
status = j1 + 2*j2, where each j can be 0 or 1.
j1: Make edges invisible between original and thickened surface.
j2: Make edges invisible on surfaces.

REVOLVEDSHELLANGULAR{3}
REVOLVEDSHELLANGULAR{3} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

3D Shapes

GDL Reference Guide 125

REVOLVEDSHELLANGULAR{3} is an extension of the REVOLVEDSHELLANGULAR{2} command with the possibility of using inline
material definition, that means materials defined in GDL script locally also can be used next to materials defined in global material definitions.

RULEDSHELL
RULEDSHELL topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g
Surface created by connecting two polylines.
topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4: Materials on the top, bottom and four sides

of the object.
defaultMat: the numeric index of the "inner" material of the object. This material becomes visible at cut surfaces, e.g., if the object

is cut by a plane.
n: number of vertices for first profile base polyline.
m: number of vertices for second profile base polyline.
g: number of generatrices.
offset: an offset for the thickness of the shell. Cannot be negative.
thickness: thickness of the shell.
flipped:

3D Shapes

GDL Reference Guide 126

1: if the shell should be flipped,
0: otherwise

preThickenTran: a transformation executed before thickening. See the XFORM command for the meaning of parameters.
trimmingBody:
1: if the shell is to be closed for trimming purposes,
0: otherwise

firstpolyX, firstpolyY, firstpolyS: X and Y coordinates and status values for the first base profile polyline. See the
REVOLVE command for details.

secondpolyX, secondpolyY, secondpolyS: X and Y coordinates and status values for the second base profile polyline. See
the REVOLVE command for details.

profile2Tran: a transformation executed on the second profile. Use this transformation to position the second profile relative to the
first one. See the XFORM command for the meaning of parameters.

generatrixFirstIndex, generatrixSecondIndex: pairs of indexes, one from the first polyline and one from the second
polyline. The vertexes with the given indexes will be connected with a line.

3D Shapes

GDL Reference Guide 127

RULEDSHELL{2}
RULEDSHELL{2} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g, status,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g
RULEDSHELL{2} is an extension of the RULEDSHELL command with the possibility of hiding edges of surfaces, and edges between
original and thickened surface.
status: Status bits:
status = j1 + 2*j2, where each j can be 0 or 1.
j1: Make edges invisible between original and thickened surface.
j2: Make edges invisible on surfaces.

3D Shapes

GDL Reference Guide 128

Example:

3D Shapes

GDL Reference Guide 129

RULEDSHELL "Paint-14", "Paint-14",
 "Paint-14", "Paint-14", "Paint-14", "Paint-14", "Paint-14",
 4, 3, 3,
 0.00, 0.30, 0, 0,
 ! transformation matrix
 1.00, 0.00, 0.00, 0.00,
 0.00, 0.00, -1.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 ! profile 1 polyline
 0.00, 0.00, 2,
 2.00, 2.00, 2,
 4.00, 0.00, 2,
 6.00, 0.00, 2,
 ! profile 2 polyline
 0.00, 0.00, 2,
 2.00, 2.00, 2,
 6.00, 1.00, 2,
 ! transformation matrix
 1.00, 0.00, 0.00, 0.00,
 0.00, 1.00, 0.00, 0.00,
 0.00, 0.00, 1.00, -10.00,
 ! generatrices
 1, 1,
 2, 2,
 4, 3

3D Shapes

GDL Reference Guide 130

RULEDSHELL{3}
RULEDSHELL{3} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g, status,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g
RULEDSHELL{3} is an extension of the RULEDSHELL{2} command with the possibility of using inline material definition, that means
materials defined in GDL script locally also can be used next to materials defined in global material definitions.

ELEMENTS FOR VISUALIZATION

LIGHT
LIGHT red, green, blue, shadow,
 radius, alpha, beta, angle_falloff,
 distance1, distance2,
 distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
 name2 = value2, ...]
A light source radiates [red, green, blue] colored light from the local origin along the local x axis. The light is projected parallel to the x axis
from a point or circle source. It has its maximum intensity within the alpha-angle frustum of a cone and falls to zero at the beta-angle frustum
of a cone. This falloff is controlled by the angle_falloff parameter. (Zero gives the light a sharp edge, higher values mean that the transition
is smoother.) The effect of the light is limited along the axis by the distance1 and distance2 clipping values. The distance_falloff parameter
controls the decrease in intensity depending on the distance. (Zero value means a constant intensity; bigger values are used for stronger falloff.)

3D Shapes

GDL Reference Guide 131

GDL transformations affect only the starting point and the direction of the light.
shadow: controls the light’s shadow casting.
0: light casts no shadows,
1: light casts shadows.

beta
alpha

intensity

dist1

dist2

radius

Restriction of parameters:
alpha <= beta <= 80°

The following parameter combinations have special meanings:
radius = 0, alpha = 0, beta = 0: A point light, it radiates light in every direction and does not cast any shadows. The shadow
and angle_falloff parameters are ignored, the values shadow = 0, angle_falloff = 0 are supposed.
radius > 0, alpha = 0, beta = 0: A directional light with parallel beams.

3D Shapes

GDL Reference Guide 132

r = 0, alpha > 0, beta > 0: A directional light with conic beams.

r > 0, alpha = 0, beta > 0: A directional light with parallel beam and conic falloff.

Light definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword. Additional data has a name (namei)
and a value (valuei), which can be an expression of any type, even an array. If a string parameter name ends with the substring "_file", its value
is considered to be a file name and will be included in the archive project.

3D Shapes

GDL Reference Guide 133

Different meanings of additional data can be defined and used by the executing application.

Example 1:
LIGHT 1.0,0.2,0.3, ! RGB
 1, ! shadow on
 1.0, ! radius
 45.0, 60.0, ! angle1, angle2
 0.3, ! angle_falloff
 1.0, 10.0, ! distance1, distance2
 0.2 ! distance_falloff

Example 2:
The library part dialog box for lights in ARCHICAD:

3D Shapes

GDL Reference Guide 134

Part of the corresponding GDL script:
if gs_light_switch > 0 then
 LIGHT gs_light_intensity/100*gs_color_red, \
 gs_light_intensity/100*gs_color_green, \
 gs_light_intensity/100*gs_color_blue, ! RGB
 ...
endif

3D Shapes

GDL Reference Guide 135

PICTURE
PICTURE expression, a, b, mask
A picture element for photorendering.

A string type expression means a file name, a numeric expression or the index of a picture stored in the library part. A 0 index is a special
value that refers to the preview picture of the library part. Other pictures can only be stored in library parts when saving the project or selected
elements containing pictures as GDL Objects.
Indexed picture reference cannot be used in the MASTER_GDL script when attributes are merged into the current attribute set. The image
is fitted on a rectangle treated as a RECT in any other 3D projection method.
mask: alpha + distortion
alpha: alpha channel control.
0: do not use alpha channel; picture is a rectangle,
1: use alpha channel; parts of the picture may be transparent.

distortion: distortion control.
0: fit the picture into the given rectangle,
2: fit the picture in the middle of the rectangle using the natural aspect ratio of the picture,
4: fill the rectangle with the picture in a central position using natural aspect ratio of the picture.

3D Shapes

GDL Reference Guide 136

distortion=0 distortion=2 distortion=4

3D TEXT ELEMENTS

TEXT
TEXT d, 0, expression
A 3D representation of the value of a string or numeric type expression in the current style.
See the [SET] STYLE command and the DEFINE STYLE command.
d: thickness of the characters in meters.
In the current version of GDL, the second parameter is always zero.

Note: For compatibility with the 2D GDL script, character heights are always interpreted in millimeters in DEFINE STYLE statements.

Example 1:

DEFINE STYLE "aa" "New York", 3, 7, 0
SET STYLE "aa"
TEXT 0.005, 0, "3D Text"

3D Shapes

GDL Reference Guide 137

Example 2:

name = "Grand"
ROTX 90
ROTY -30
TEXT 0.003, 0, name
ADDX STW (name)/1000
ROTY 60
TEXT 0.003, 0, "Hotel"

RICHTEXT
RICHTEXT x, y,
 height, 0, textblock_name
A 3D representation of a previously defined TEXTBLOCK. For more details, see the TEXTBLOCK command.
x, y: X-Y coordinates of the richtext location.
height: thickness of the characters in meters.
textblock_name: the name of a previously defined TEXTBLOCK.
In the current version of GDL, the 4th parameter is always zero.

PRIMITIVE ELEMENTS
The primitives of the 3D data structure are VERT, VECT, EDGE, PGON and BODY. The bodies are represented by their surfaces and the
connections between them. The information to execute a 3D cutaway comes from the connection information.
Indexing starts with 1, and a BASE statement or any new body (implicit BASE statement) resets indices to 1. For each edge, the indices of the
adjacent polygons (maximum 2) are stored. Edges’ orientations are defined by the two vertices determined first and second.
Polygons are lists of edges with an orientation including the indices of the edges. These numbers can have a negative prefix. This means that
the given edge is used in the opposite direction. Polygons can include holes. In the list of edges, a zero index indicates a new hole. Holes must

3D Shapes

GDL Reference Guide 138

not include other holes. One edge may belong to 0 to 2 polygons. In the case of closed bodies, the polygon’s orientation is correct if the edge
has different prefixes in the edge list of the two polygons.
The normal vectors of the polygons are stored separately. In the case of closed bodies, they point from the inside to the outside of the body.
The orientation of the edge list is counterclockwise (mathematical positive), if you are looking at it from the outside. The orientation of the
holes is opposite to that of the parent polygon. Normal vectors of an open body must point to the same side of the body.
To determine the inside and outside of bodies they must be closed. A simple definition for a closed body is the following: each edge has exactly
two adjacent polygons.
The efficiency of the cutting, hidden line removal or rendering algorithms is lower for open bodies. Each compound three-dimensional element
with regular parameters is a closed body in the internal 3D data structure.
Contour line searching is based on the status bits of edges and on their adjacent polygons. This is automatically set for compound curved
elements but it is up to you to specify these bits correctly in the case of primitive elements.
In the case of a simplified definition (vect = 0 or status < 0 in a PGON) the primitives that are referred to by others must precede their
reference. In this case, the recommended order is:
VERT (TEVE)
EDGE
(VECT)
PGON (PIPG)
COOR
BODY
Searching for adjacent polygons by the edges is done during the execution of the BODY command.
The numbering of VERTs, EDGEs, VECTs and PGONs is relative to the last (explicit or implicit) BASE statement.
Status values are used to store special information about primitives. Each single bit usually has an independent meaning in the status, but there
are some exceptions.
Given values can be added together. Other bit combinations than the ones given below are strictly reserved for internal use. The default for
each status is zero.

VERT
VERT x, y, z
A node in the x-y-z space, defined by three coordinates.

VERT{2}
VERT x, y, z, hard

3D Shapes

GDL Reference Guide 139

Extension of the VERT command including a possibility to declare a node to be hard vertex. A hard vertex defines a break when rendering
smooth surfaces.
x, y, z: coordinates of the node.
hard:
1: if the vertex should define a break when rendering smooth surfaces
0: otherwise

TEVE
TEVE x, y, z, u, v
Extension of the VERT command including a texture coordinate definition. Can be used instead of the VERT command if user-defined texture
coordinates are required instead of the automatic texture wrapping (see the COOR command).
x, y, z: coordinates of a node.
u, v: texture coordinates of the node (u, v) coordinates for each vertex of the current body must be specified and each vertex should have

only one texture coordinate. If VERT and TEVE statements are mixed inside a body definition, (u, v) coordinates are ineffective.

Note: The (u, v) texture coordinates are only effective in photorenderings, and not for vectorial fill mapping.

VECT
VECT x, y, z
Definition of the normal vector of a polygon by three coordinates. In case of a simplified definition (vect=0 in a PGON), these statements
can be omitted.

EDGE
EDGE vert1, vert2, pgon1, pgon2, status
Definition of an edge.
vert1, vert2: index of the endpoints. The vert1 and vert2 indices must be different and referenced to previously defined VERTs.
pgon1, pgon2: indices of the neighboring polygons. Zero and negative values have special meanings:
0: terminal or standalone edge,
< 0: possible neighbors will be searched for,

status: Status bits:
status = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 262144*j19, where each j can be 0 or 1.
j1: invisible edge,

3D Shapes

GDL Reference Guide 140

j2: edge of a curved surface.
Reserved status bits for future use:
j3: first edge of a curved surface (effective only when j2=1),
j4: last edge of a curved surface (effective only when j2=1),
j5: the edge is an arc segment,
j6: first segment of an arc (effective only when j4=1),
j7: last segment of an arc (effective only when j4=1),
j19: render sharp edge between 2 curved polygons (effective only when j2=1).

PGON
PGON n, vect, status, edge1, edge2, ..., edgen
Polygon definition.
n: number of edges in the edge list.
vect: index of the normal vector. It must refer to a previously defined VECT.

Note: If vect = 0, the program will calculate the normal vector during the analysis.
edge1, edge2, ..., edgen: these indices must refer to previously defined EDGEs. A zero value means the beginning or the end

of a hole definition. A negative index changes the direction of the stored normal vector or edge to the opposite in the polygon. (The stored
vector or edge does not change; other polygons can refer to it using the original orientation with a positive index.)

status: Status bits:
status = j1 + 2*j2 + 16*j5 + 32*j6 + 64*j7 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: invisible polygon,
j2: polygon of a curved surface,
j5: concave polygon,
j6: polygon with hole(s),
j7: hole(s) are convex (effective only when j6=1),
Reserved status bits for future use:
j3: first polygon of a curved surface (effective only when j2=1),
j4: last polygon of a curved surface (effective only when j2=1).

If the status value is negative, the engine will calculate the status of the polygon (like concave polygon or polygon with hole).
n = 0 is allowed for special purposes.

3D Shapes

GDL Reference Guide 141

PGON{2}
PGON{2} n, vect, status, wrap, edge_or_wrap1, ..., edge_or_wrapn
The first three parameters are similar to the ones at the PGON command.
wrap: wrapping mode + projection type.
0: the global wrapping mode is applied,
> 0: the meaning is the same as it is in the COOR command.

edge_or_wrap1, ..., edge_or_wrapn: The number and meaning of these parameters are based on the wrap definition:
edge1, ..., edgen: if wrap is 0; in this case edgen means the same as at the PGON command, and globally defined texture
mapping will be applied;
x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4, edge1, ..., edgen: if wrapping mode isn't 0 in wrap;
in this case xi, yi, zi coordinates defining the coordinate system of the texture mapping for the polygon;
edge1, u1, v1, ..., edgen, un, vn: if wrapping mode is 0 but projection type isn't 0 in wrap; in this case ui, vi texture
space coordinates are the same as at the TEVE command; the mapping will affect the currently defined polygon only.

PGON{3}
PGON{3} n, vect, status, wrap_method, wrap_flags, edge_or_wrap1, ..., edge_or_wrapn
The parameters are similar to the the PGON{2} command, except wrap, which is split into two parameters wrap_method and
wrap_flags. The meaning of these is the same as in the COOR{2} command.

PIPG
PIPG expression, a, b, mask, n, vect, status,
 edge1, edge2, ..., edgen
Picture polygon definition. The first four parameters are the same as in the PICTURE command; the remaining ones are the same as in the
PGON command.

COOR
COOR wrap, vert1, vert2, vert3, vert4
Deprecated. See the COOR{3} command.
Local coordinate system of a BODY for the fill and texture mapping.
wrap: wrapping mode + projection type
Wrapping modes:
1: planar box (deprecated),

3D Shapes

GDL Reference Guide 142

2: box,
3: cylindrical,
4: spherical,
5: same as the cylindrical fill mapping, but in rendering the top and the bottom surface will get a circular mapping,
6: planar

Projection types:
256: the fill always starts at the origin of the local coordinate system,
1024: quadratic texture projection (recommended),
2048: linear texture projection based on the average distance,
4096: linear texture projection based on normal triangulation.

Note: The last three values are only effective with custom texture coordinate definitions (see the TEVE command).
vert1: index of a VERT, representing the origin of the local coordinate system.
vert2, vert3, vert4: indices of VERTs defining the three coordinate axes.
Use a minus sign (-) before VERT indices if they are used only for defining the local coordinate system.

3D Shapes

GDL Reference Guide 143

Example: For custom texture axes:
CSLAB_ "Brick-White", "Brick-White", "Brick-White",
 4, 0.5,
 0, 0, 0, 15,
 1, 0, 0, 15,
 1, 1, 1, 15,
 0, 1, 1, 15
BASE
VERT 1, 0, 0 !#1
VERT 1, 1, 1 !#2
VERT 0, 0, 0 !#3
VERT 1, 0, 1 !#4
COOR 2, -1, -2, -3, -4
BODY 1

X

Y

X'

Y'

Z

Z'

COOR{2}
COOR{2} wrap_method, wrap_flags, vert1, vert2, vert3, vert4
Deprecated. See the COOR{3} command.
Similar to the COOR command, changing wrap to two parameters wrap_method and wrap_flags, and also extending the possibilities
of it.

3D Shapes

GDL Reference Guide 144

wrap_method: Wrapping modes are the same as described in the the COOR command. Projection types don't apply, use wrap_flags
instead.

wrap_flags: Wrapping flags
wrap_flags = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j3: quadratic texture projection (recommended),
j4: linear texture projection based on the average distance,
j5: linear texture projection based on normal triangulation,
j8: translate the origin of the texture coordinate system closest to the global origin in the direction of the X, Y or Z axis respectively. For
example, j6 makes the origin translating in the direction of the X axis (along v2 - v1 vector) so that it will be the orthogonal projection
of the global origin to the line of the X axis. That is, if all j6, j7 and j8 are 1, the origin is translated into the global origin (same as if
projection type is 256 in the the COOR command).

Note: The j3, j4 and j5 flags are only effective if wrap_method is 0 and only one of them can be 1. The j6, j7 and j8 flags are only
effective if wrap_method is not 0. These can be 1 at the same time in any combination.

vert1, vert2, vert3, vert4: like in the COOR command.

COOR{3}
COOR{3} wrapping_method, wrap_flags,
 origin_X, origin_Y, origin_Z,
 endOfX_X, endOfX_Y, endOfX_Z,
 endOfY_X, endOfY_Y, endOfY_Z,
 endOfZ_X, endOfZ_Y, endOfZ_Z
Compatibility: introduced in ARCHICAD 20.
Similar to the COOR{2} command. Can be used with array parameter input (see WALL_TEXTURE_WRAP global in the section called “Wall
parameters - available for Doors/Windows, listing and labels” for more).
The coordinate system of the projection body is included in the COOR{3} command itself, no need to define additional vertexes in the current
BODY. Compatible with NURBS bodies (no non-NURBS primitives are needed to set up the texture coordinate system).
wrap_method: Wrapping modes are the same as described in the the COOR command supplemented by NURBS based wrapping mode.

Projection types don't apply, use wrap_flags instead.
1: planar box (deprecated),
2: box,
3: cylindrical,
4: spherical,

3D Shapes

GDL Reference Guide 145

5: same as the cylindrical fill mapping, but in rendering the top and the bottom surface will get a circular mapping,
6: planar,
7: NURBS based, the vertices' texture coordinates are from their surface parameters, only in case of NURBS bodies.

wrap_flags: Wrapping flags
wrap_flags = 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j3: quadratic texture projection (recommended),
j4: linear texture projection based on the average distance,
j5: linear texture projection based on normal triangulation,
j8: translate the origin of the texture coordinate system closest to the global origin in the direction of the X, Y or Z axis respectively. For
example, j6 makes the origin translating in the direction of the X axis so that it will be the orthogonal projection of the global origin to
the line of the X axis. That is, if all j6, j7 and j8 are 1, the origin is translated into the global origin (opposite effect of projection type
256 in the the COOR command).

Note: The j3, j4 and j5 flags are only effective if wrap_method is 0 and only one of them can be 1. The j6, j7 and j8 flags are only
effective if wrap_method is not 0. These can be 1 at the same time in any combination.

origin_X, origin_Y, origin_Z: node in the x-y-z space, defined by three coordinates, texture origin.
endOfX_X, endOfX_Y, endOfX_Z: node in the x-y-z space, defined by three coordinates, texture mapping X direction.
endOfY_X, endOfY_Y, endOfY_Z: node in the x-y-z space, defined by three coordinates, texture mapping Y direction.
endOfZ_X, endOfZ_Y, endOfZ_Z: node in the x-y-z space, defined by three coordinates, texture mapping Z direction.

3D Shapes

GDL Reference Guide 146

Example: COOR{3} and equivalent COOR{2} parametrisation

COOR{3} wrapping_method, wrap_flags,
 origin_X, origin_Y, origin_Z,
 endOfX_X, endOfX_Y, endOfX_Z,
 endOfY_X, endOfY_Y, endOfY_Z,
 endOfZ_X, endOfZ_Y, endOfZ_Z

! COOR{2} equivalent
BASE
VERT origin_X, origin_Y, origin_Z,
VERT endOfX_X, endOfX_Y, endOfX_Z
VERT endOfY_X, endOfY_Y, endOfY_Z
VERT endOfZ_X, endOfZ_Y, endOfZ_Z
COOR{2} wrapping_method, wrap_flags, -1, -2, -3, -4

BODY
BODY status
Composes a body defined with the above primitives.
status: Status bits:
status = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: closed body (deprecated),
j2: body including curved surface(s) (deprecated),
j3: surface model: when the body is cut, no surface originates on the cutting plane,
j6: body always casts shadow independently from automatic preselection algorithm,
j7: body never casts shadow.
If neither j6 nor j7 are set, the automatic shadow preselection is performed.
See the SHADOW command.
If the status value is negative, the engine will calculate the status of the body.

3D Shapes

GDL Reference Guide 147

Example:

x

y

z

1

2 3

4

5

6 7

8

1: Complete description

3D Shapes

GDL Reference Guide 148

VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, 1, 3, 0 !#1
EDGE 2, 3, 1, 4, 0 !#2
EDGE 3, 4, 1, 5, 0 !#3
EDGE 4, 1, 1, 6, 0 !#4
EDGE 5, 6, 2, 3, 0 !#5
EDGE 6, 7, 2, 4, 0 !#6
EDGE 7, 8, 2, 5, 0 !#7
EDGE 8, 5, 2, 6, 0 !#8
EDGE 1, 5, 6, 3, 0 !#9
EDGE 2, 6, 3, 4, 0 !#10
EDGE 3, 7, 4, 5, 0 !#11
EDGE 4, 8, 5, 6, 0 !#12
VECT 1.0, 0.0, 0.0 !#1
VECT 0.0, 1.0, 0.0 !#2
VECT 0.0, 0.0, 1.0 !#3
PGON 4, -3, 0, -1, -4, -3, -2 !#1 !VERT1,2,3,4
PGON 4, 3, 0, 5, 6, 7, 8 !#2 !VERT5,6,7,8
PGON 4, -2, 0, 1, 10, -5, -9 !#3 !VERT1,2,5,6
PGON 4, 1, 0, 2, 11, -6, -10 !#4 !VERT2,3,6,7
PGON 4, 2, 0, 3, 12, -7, -11 !#5 !VERT3,4,7,8
PGON 4, -1, 0, 4, 9, -8, -12 !#6 !VERT1,4,5,8
BODY 1 !CUBE
2: (no direct reference to the polygons or the vectors, they will be calculated)

3D Shapes

GDL Reference Guide 149

VERT 0.0, 0.0, 0.0 !#1
VERT 1.0, 0.0, 0.0 !#2
VERT 1.0, 1.0, 0.0 !#3
VERT 0.0, 1.0, 0.0 !#4
VERT 0.0, 0.0, 1.0 !#5
VERT 1.0, 0.0, 1.0 !#6
VERT 1.0, 1.0, 1.0 !#7
VERT 0.0, 1.0, 1.0 !#8
EDGE 1, 2, -1, -1, 0 !#1
EDGE 2, 3, -1, -1, 0 !#2
EDGE 3, 4, -1, -1, 0 !#3
EDGE 4, 1, -1, -1, 0 !#4
EDGE 5, 6, -1, -1, 0 !#5
EDGE 6, 7, -1, -1, 0 !#6
EDGE 7, 8, -1, -1, 0 !#7
EDGE 8, 5, -1, -1, 0 !#8
EDGE 1, 5, -1, -1, 0 !#9
EDGE 2, 6, -1, -1, 0 !#10
EDGE 3, 7, -1, -1, 0 !#11
EDGE 4, 8, -1, -1, 0 !#12
PGON 4, 0, -1, -1, -4, -3, -2 !#1
!VERT1,2,3,4
PGON 4, 0, -1, 5, 6, 7, 8 !#2
!VERT5,6,7,8
PGON 4, 0, -1, 1, 10, -5, -9 !#3
!VERT1,2,5,6
PGON 4, 0, -1, 2, 11, -6, -10 !#4
!VERT2,3,6,7
PGON 4, 0, -1, 3, 12, -7, -11 !#5
!VERT3,4,7,8
PGON 4, 0, -1, 4, 9, -8, -12 !#6
!VERT1,4,5,8
BODY -1 !CUBE

BASE
BASE
Resets counters for low-level geometric elements (VERT, TEVE, VECT, EDGE, PGON and PIPG) statements. Implicitly issued after every
compound element definition.

3D Shapes

GDL Reference Guide 150

NURBS PRIMITIVE ELEMENTS
The primitives of 3D data structure of NURBS bodies are the NURBSCURVE2D command, the NURBSCURVE3D command,
the NURBSSURFACE command, the NURBSVERT command, the NURBSEDGE command, the NURBSTRIM command, the
NURBSTRIMSINGULAR command, the NURBSFACE command, the NURBSLUMP command, and the NURBSBODY command.
Solid NURBS bodies are represented by the boundary NURBS faces of the solid region(s), laminar surface NURBS bodies are represented by
the NURBS faces themself, wire NURBS bodies are represented by the NURBS edges. A NURBS body can have solid, laminar and wire part
at the same time, a NURBS body itself is not classified into solid/surface/wire categories.
Nurbs primitives can not be used in planar face bodies and non-NURBS primitives can not be used in NURBS bodies. A non-NURBS
primitive statement causes the NURBS body under construction to be finished and a new non-NURBS body to be started (implicit BODY
and NURBSBODY statements).
Similarly a NURBS primitive statement causes the non-NURBS body under construction to be finished and a new NURBS body to be started. A
compound statement (BRICK, CYLIND, PRISM, etc.) or a MODEL statement causes either NURBS or non-NURBS body under construction
to be finished. If a NURBSBODY statement closes a non-NURBS body or a BODY statement closes a NURBS body, the given status value
will have no effect.
Indexing of NURBS primitives starts from 1. Indexing of NURBS primitives and non-NURBS primitives (VERT, TEVE, EDGE, VECT,
PGON, PIPG) are handled separately. The BASE statement resets counter for NURBS body primitives also. All primitives referenced by
another primitive should be defined before the referencing one (e.g. vertices and 3D curve of edge should be defined before the edge).
The NURBSCURVE2D, NURBSCURVE3D and NURBSSURFACE statements create only geometric elements in the NURBS body which
will not be visible themselves. A NURBS edge defines its geometric support by referencing a 3D NURBS curve, similarly a NURBS trim
references a 2D NURBS curve and a NURBS face references a NURBS surface as its geometric support (the edge, trim and face may not
extend to the whole geometric support, see details at each command description).
The NURBS edge, its 3D curve, its trims, and the 2D curves of the trims are always oriented consistently. The NURBS face and its surface
are always oriented consistently.
The NURBS faces may be organized into NURBS lumps. A lump defines a solid region bounded by one or more shells. A shell is a closed
and connected set of faces which separates the space into two regions. A lump has an outer shell which separates the lump from the infinity
and may have void shells which separate the lump from inner cavities.
Consistent orientation of faces in a shell is not necessary, two neighbouring face can refer to the same edge in the same direction. But shells
of lump must have consistent orientations, the back side of a shell should look toward the interior of the lump, for this the lump can refer to
the faces with negative prefix for reversed orientation.
Faces which are not part of a lump will be treated as laminar surfaces, even if the faces form a closed shell. Edges which are not part of a face
will be treated as wire edges. One NURBS body can contain solid lumps, laminar faces and wire edges at the same time.

3D Shapes

GDL Reference Guide 151

The 2-manifold property is not required for NURBS bodies, a NURBS edge may be connected to more than two faces (by more than two
trims). Even a shell of a NURBS lump can have more than two faces at an edge as long as the shell still separates the space into two regions
(this means even number of faces of a given shell on each edge).
The RADIUS, RESOL and TOLER statements have no effect on the smoothness of the NURBS faces and edges. The smoothness of NURBS
primitives is calculated automatically and may be limited for a NURBS body by the parameters of the NURBSBODY command (see details
at NURBSBODY).
For correct texture setting for NURBS, see the the COOR{3} command.

NURBS Face trimming
A NURBS surface is a two dimensional sheet in the three dimensional space and is defined by a geometric function mapping a rectangle to the
space. The geometry of a NURBS face is always a part of a NURBS surface but may be more complex than that. This is made possible by trims.
A trim defines a cut on the domain rectangle of the surface, a cut with a two dimensional NURBS curve. This implies a cut on the three
dimensional sheet of the surface. This cut lies along the bounding NURBS edge of the face and the geometry of the cut along the surface sheet
must be consistent with the geometry of the NURBS edge.
A NURBS face has contours just like a traditional PGON, but the contours are not lists of NURBS edges but NURBS trims because the trims
have the information needed to cut the face properly. (The 2d curve of trims may be computed from the 3d curve of the edge but it may be
inaccurate or even ambiguous in case of surfaces with self-intersection or singularities or in case of erroneous data.)

NURBS Geometry Commands
The following commands describe geometric parts of NURBS elements: curves and surface.

NURBSCURVE2D
NURBSCURVE2D degree, nControlPoints,
 knot_1, knot_2, ..., knot_m,
 cPoint_1_x, cPoint_1_y, weight_1,
 cPoint_2_x, cPoint_2_y, weight_2,
 ...,
 cPoint_n_x, cPoint_n_y, weight_n

3D Shapes

GDL Reference Guide 152

NURBSCURVE3D
NURBSCURVE3D degree, nControlPoints,
 knot_1, knot_2, ..., knot_m,
 cPoint_1_x, cPoint_1_y, cPoint_1_z, weight_1,
 cPoint_2_x, cPoint_2_y, cPoint_2_z, weight_2,
 ...,
 cPoint_n_x, cPoint_n_y, cPoint_n_z, weight_n
2 and 3 dimensional NURBS curves with given degree, knotvector, controlpoints and weigths.
degree: degree of NURBS curve, one less than order of curve (order = degree + 1), positive
nControlPoints: number of control points (n), greater than the degree of the curve (not less than the order)
knot_i: index i knot value

• number of knot values (m, the size of knot vector) is given by the following: m = degree + 1 + n
• knots are in non-descending order (knot_i <= knot_{i+1})
• equal knot values are allowed, with multiplicity up to degree, or with multiplicity up to degree+1 for the first and last knot.

cPoint_i_x, cPoint_i_y, cPoint_i_z: coordinates of index i control point
weight_i: weigth of index i control point, positive
Periodic curves are not handled separately, but described as floating (not clamped) NURBS curves which are geometrically closed and have
appropriately continuous connection at the the ends. This is ensured by repeating sufficient number of control points and knot-intervals at
the end:
• the last degree many control points are duplicates of the first degree many control points (not in reverse order),
• the first twice-the-degree number of knot-differences (knot_1-knot_0, knot_2-knot_1, ...) are the same as the last ones in the knot vector

(these are the knots which are in connection with the first (or last) degree many control points).
The usable domain of a curve is the closed interval between knot_{degree + 1} and knot_{m - degree}.

3D Shapes

GDL Reference Guide 153

NURBSSURFACE
NURBSSURFACE degree_u, degree_v, nu, nv,
 knot_u_1, knot_u_2, ..., knot_u_mu,
 knot_v_1, knot_v_2, ..., knot_v_mv,
 cPoint_1_1_x, cPoint_1_1_y, cPoint_1_1_z, weight_1_1,
 cPoint_1_2_x, cPoint_1_2_y, cPoint_1_2_z, weight_1_2,
 ...,
 cPoint_1_nv_x, cPoint_1_nv_y, cPoint_1_nv_z, weight_1_nv,
 cPoint_2_1_x, cPoint_2_1_y, cPoint_2_1_z, weight_2_1,
 ...,
 cPoint_nu_nv_x, cPoint_nu_nv_y, cPoint_nu_nv_z, weight_nu_nv
3-dimensional NURBS surface with u-v parameter space, given degree, knotvectors in u and v directions and given controlpoint, weigth net.
Degrees are one less than orders of surface (order_u = degree_u + 1), degrees are positive.
degree_u: degree of surface in the u parameter direction
degree_v: degree of surface in the v parameter direction
nu, nv: number of control points in u and v directions, greater than degree (not less than order) of then surface in given direction
knot_u_i, knot_v_i: index i knot value in u and v directions

• their number (the size of knot vector) is given by the following: mu = degree_u + 1 + nu
• knots are in non-descending order (knot_u_i <= knot_u_{i+1}, knot_v_i <= knot_v_{i+1})
• equal knot values are allowed, with multiplicity up to degree, or with multiplicity up to degree+1 for the first and last knot.

cPoint_i_j_x, cPoint_i_j_y, cPoint_i_j_z: control point on the control point net, index i in the u direction, index j in
the v direction

weight_i_j: weight for control point cPoint_ij, positive
Surfaces may be periodic in either (u or v) direction or in both directions. Periodic surfaces are not handled separately, but described as floating
(not clamped) NURBS surfaces which are geometrically closed and have appropriately continuous connection at the the ends. This is ensured
the same way as in case of curves.
The usable domain of a surface is the cross product of the closed intervals between knot_u_{degree_u + 1}, knot_u_{mu - degree_u} and
knot_v_{degree_v + 1}, knot_v_{mv - degree_v} respectively.

NURBS Topology Commands
The following commands describe topological parts of NURBS elements.

3D Shapes

GDL Reference Guide 154

NURBSVERT
NURBSVERT x, y, z, hard, tolerance
Vertex, a node of a NURBS body. Different from any vertex created by the VERT command, indexed separately from those. Can be used in
NURBS bodies only, excluding planar-face bodies.
x, y, z: coordinates of vertex
hard:
1: if the vertex should define a break when rendering smooth surfaces,
0: otherwise.

tolerance: maximum geometric distance between NURBS vertex and other entities (NURBS edge, NURBS face) which are topologically
connected to it. If negative, tolerance will be some predefined default.

NURBSEDGE
NURBSEDGE vert1, vert2, curve, curveDomainBeg, curveDomainEnd, status, tolerance
Edge of a NURBS body. Different from any edge created by the EDGE command, indexed separately from those. Can be used in NURBS
bodies only, excluding planar-face bodies.
vert1, vert2: gdl-index of begin and end NURBS vertices

• vert1 and vert2 can be equal. In this case the edge is a loop edge (and its curve is closed or has a closed part)
• vert1 and vert2 can be zero for a ring edge (which has no vertices and its curve is closed or has a closed part)

curve: gdl-index of NURBS curve for the geometry of edge. Positive index, orientation of edge always coincide with orientation of the curve.
curveDomainBeg, curveDomainEnd: definition of the part of curve which geometrically represents the edge. The curveDomainEnd

must be greater than curveDomainBeg, they must not coincide, and both value must be in the usable domain of the curve.
status: status control of the edge:
status = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: invisible edge (may be set only if j2 is not set).
j2: edge only visible if contour (may be set only if j1 is not set).
j3: smooth edge (edge does not define a break when rendering smooth surfaces).
If both j1 and j2 are set, the edge will produce an error causing the whole NURBS-body to vanish.

tolerance: maximum geometric distance between NURBS edge and other entities (NURBS face) which are topologically connected to
it. If negative, tolerance will be some predefined default.

3D Shapes

GDL Reference Guide 155

The curve evaluated at each endpoint should coincide with the position of the appropriate vertex. The edge can be a ring edge with no vertex.
In this case the edge restricted to [curveDomainBeg, curveDomainEnd] must be closed, i.e. it evaluates equally at each endpoints. Any number
of edges can be attached to a vertex. The color of a NURBS edge is defined by the last PEN statement.

NURBSTRIM
NURBSTRIM edge, curve, curveDomainBeg, curveDomainEnd, tolerance

NURBSTRIMSINGULAR
NURBSTRIMSINGULAR vertex, curve, curveDomainBeg, curveDomainEnd, tolerance
A bounding edge of a face. Used for trimming a face in the parameter space of the surface of the face. NURBSTRIMSINGULAR is used along
singular sides of the surface (which side is contracted to one point on the surface). Connects the face to an edge (or to a vertex in singular case).
edge: gdl-index of NURBS edge to which this trim is attached. Positive index, edge and trim are always oriented consistently.
vertex: gdl-index of NURBS vertex to which this trim is attached (singular case).
curve: gdl-index of a 2D NURBS curve. Positive index, curve and trim are always oriented consistently. It is defined on the domain (u-

v parameter space) of the surface of the face.
curveDomainBeg, curveDomainEnd: definition of the part of curve which geometrically represents the trim. The curveDomainEnd

must be greater than curveDomainBeg, they must not coincide, and both value must be in the usable domain of the curve.
tolerance: maximum geometric distance between 2D curve of NURBS trim and other entities (other NURBS trims) which are

topologically connected to it. If negative, tolerance will be some predefined default.
The curve restricted to [curveDomainBeg, curveDomainEnd] interval should completely lie within the usable domain of the surface of the
face (with given tolerance). For NURBSTRIMSINGULAR the 2D curve must lie along a singular side of the usable domain (u-v parameter
space) of the surface of the face.
The composition of the restricted 2D curve and the surface gives a 3D curve which should coincide with the restricted 3D curve of the edge.
Therefore the 2D curve evaluated at curveDomainBeg and curveDomainEnd should coincide with the position of the appropriate vertex. In
the singular case the composition of the 2D curve and the surface gives a 3D point, which should coincide with the given vertex.
Indexing of singular and non-singular trims is common.
Any number of trims can refer to each edge (so indirectly any number of face can be attached to an edge). The edge can be non-2-manifold.
Two trims on one edge may belong to the same face, in this case edge is called a seam edge. For example a mantle of a cylinder can be one
face with a seam edge.

3D Shapes

GDL Reference Guide 156

NURBSFACE
NURBSFACE n, surface, tolerance,
 trim1, trim2, ..., trimn
Face of a NURBS body. Different from any polygon created by the PGON command, indexed separately from those. Can be used in NURBS
bodies only, excluding planar-face bodies.
n: number of bounding edges (including optional hole-separator zeros).
surface: gdl-index of a NURBS surface supporting the face. Positive index, orientation of face is always identical to the orientation of

surface.
trimi: gdl-index of NURBS trim bounding the face.

• The trims are listed in a counter-clocwise (mathematical positive) order on the surface for the outer contour loop and clockwise (negative)
for hole contour loop(s).

• May be zero, which indicates end of contour (hole-separator).
• Negative index means trim and the contour (of face) have opposite orientation.

tolerance: if negative, tolerance will be some predefined default.
The trims must connect at common vertices: the end vertex of a trim is the same as the begin vertex of the next trim in the face. (The vertices
of a trim are the vertices of the edge of the trim for a non-singular trim.)
The consecutive trims - as 2D curves - also connect in the domain (parameter space) of the face, defining one or more closed contour loops
on it. The first loop is always an outer loop which separates an infinite outer and a finite inner region on the plane. The potential subsequent
loops are hole contours.
The 2D curve of each trim should completely lie inside the usable domain of the surface of the face and should not intersect itself or curves
of other trims of the face. Each trim must be used in only one face.
The material and section attributes of a face are determined by the last MATERIAL and SECT_ATTRS (or SECT_FILL) statements
respectively. The color of the edges inside the face created for polygonal segmentations is defined by the last PEN statement. This is practically
visible on silhouettes coming from the internal of this face.

3D Shapes

GDL Reference Guide 157

NURBSFACE{2}
NURBSFACE{2} n, surface, tolerance,
 wrap_method, wrap_flags,
 x1, y1, z1,
 x2, y2, z2,
 x3, y3, z3,
 x4, y4, z4,
 trim1, trim2, ..., trimn
Similar to the NURBSFACE command, extended with the ability to describe texture mapping on the NURBS face like in the PGON{3}
command.
n, surface, tolerance: same as the NURBSFACE command.
wrap_method: same as the PGON{3} command.

• 0: the global wrapping mode is applied (x1 ... z4 parameters are required but will be ignored)
• > 0: same as the PGON{3} command

wrap_flags: similar to the the PGON{3} command, except that projection type flags (j3, j4 and j5) are ignored (texture coordinates can
not be applied on NURBS faces).

x1, y1, z1 ... x4, y4, z4: coordinates defining the coordinate system of the texture mapping for the NURBS face (these
parameters are effective only if wrap_method > 0).

trim1 ... trimn: same as the NURBSFACE command.

NURBSLUMP
NURBSLUMP n, face1, face2, ..., facen
Defines a solid part - a geometrically connected subset - of a solid NURBS body.
n: number of bounding faces (including optional void-separator zeros).
facei: gdl-index of NURBS face bounding the lump

• May be zero, indicating the end of shell and the beginning of another shell (void-separator).
• Negative index means face is used in opposite direction. For positive index the backward side of the face correspond to the interior of

the lump, for negative index the front side looks to the interior.
The boundary of a lump may fall to several closed shells: one outer shell which separates the lump from the infinite outer region of the space;
and zero or more inner - void - shells which separate the lump from cavity regions. The faces of one shell must compose a continuous part

3D Shapes

GDL Reference Guide 158

of the face list. These different parts for different shells must be separated by a 0 value. The first shell must be the outer shell. The faces of a
shell must connect at common edges, but no ordering is assumed in the list.
Note that the faces of a shell may be connected to other faces which are not in the shell or are in another shell (because edges can have more
than two faces). Each face must be used in only one lump. Neither shell of a lump can be open - open bodies have no lumps and no shells.

NURBSBODY
NURBSBODY shadowStatus, smoothnessMin, smoothnessMax
Composes a NURBS body defined with the above NURBS primitives.
shadowStatus: status for shadow control:
shadowStatus = 32*j6 + 64*j7, where each j can be 0 or 1.
j6: NURBS body always casts shadow independently from automatic preselection algorithm,
j7: NURBS body never casts shadow.
If neither j6 nor j7 are set, the automatic shadow preselection is performed. See the SHADOW command.

smoothnessMin, smoothnessMax: limits of automatically calculated smoothness parameter for tessellation of the surfaces and
curves of body. The automatically calculated parameter will be always in the range 0 to 1 inclusive, so that smoothnessMin <= 0 means no
lower limit and smoothnessMax >= 1 means no upper limit. If smoothnessMin > smoothnessMax, values will not affect the automatically
calculated smoothness.

Any non-NURBS primitive statement (VERT, TEVE, EDGE, VECT, PGON, PIPG, BODY) or any compound statement (BRICK, CYLIND,
PRISM, REVOLVE, etc.) causes the NURBS body under construction to be finished (implicit NURBSBODY statement). In this case
smoothness limits will not be set and shadowStatus will be zero (status parameter of BODY statement will not be passed).

POINT CLOUDS

POINTCLOUD
POINTCLOUD "data_file_name"
Generates a point cloud in the 3D model. A point cloud is a set of 3D points with color and other possible metadata stored per each point.
data_file_name: the name of the loaded library part containing the point cloud data. Must be a string expression.
Point clouds are not displayed by the Internal 3D Engine. The 2D is projected, using cutplanes to filter the unnecessary points.

3D Shapes

GDL Reference Guide 159

CUTTING IN 3D
CUTPLANE
CUTPLANE [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

CUTPLANE{2}
CUTPLANE{2} angle [, status]
[statement1 ... statementn]
CUTEND

CUTPLANE{3}
CUTPLANE{3} [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND
Creates a cutting plane and removes the cut parts of enclosed shapes. CUTPLANE may have a different number of parameters.
If CUTPLANE has the following number of parameters:
0: x-y plane;
1: cutting plane goes across x axis, angle is between cutting plane and x-y plane;
2: cutting plane is parallel to z axis, crosses x axis and y axis at the given values;
3: cutting plane crosses the x, y and z axes at the given values;
4: the first three parameters are as above, with the addition of the side value as follows:
side: definition of the side to cut.
0: removes parts above cutting plane (default),
1: removes parts below cutting plane; in case of x-y, x-z, y-z, removes the parts in the negative direction of the axis.

status: status control of the cut surfaces. If the status is not given the status is set to 1+2 automatically.
status = j1 + 2*j2 + 4*j3 + 256*j9, where each j can be 0 or 1.
j1: use the attributes of the body for the generated polygons and edges.
j2: generated cut polygons will be treated as normal polygons.
j3: generated cut edges will be invisible.
j9: vertices on the cutting plane are treated as removed.

3D Shapes

GDL Reference Guide 160

The cut (without the side parameter) removes parts above the cutting plane. If the first three parameters define the x-y, x-z or y-z plane (for
example, 1.0, 1.0, 0.0 defines the x-y plane), the parts in the positive direction of the third axis are removed.
Any number of statements can be added between CUTPLANE and CUTEND. It is also possible to include CUTPLANEs in macros.
CUTPLANE parameters refer to the current coordinate system.
Transformations between CUTPLANE and CUTEND have no effect on this very cutting plane, but any successive CUTPLANEs will
be transformed. Therefore, it is recommended to use as many transformations to set up the CUTPLANE as necessary, then delete these
transformations before you define the shapes to cut.
If transformations used only to position the CUTPLANE are not removed, you may think that the CUTPLANE is at a wrong position when,
in reality, it is the shapes that have moved away.
Pairs of CUTPLANE-CUTEND commands can be nested, even within loops. If the final CUTEND is missing, its corresponding CUTPLANE
will be effective on all shapes until the end of the script.

Note 1: If CUTPLANE is not closed with CUTEND, all shapes may be entirely removed. That’s why you always get a warning message
about missing CUTENDs.

CUTPLANEs in macros affect shapes in the macro only, even if CUTEND is missing.
If a macro is called between CUTPLANE and CUTEND, the shapes in the macro will be cut.

Note 2: If you use CUTPLANE{2} with more than two parameters, then this will act like CUTPLANE.

Note 3: Prefer using CUTPLANE{3} instead of CUTPLANE. If you use CUTPLANE with 5 parameters, then the 4th parameter will be
omitted. For CUTPLANE{3}, this parameter has effect independently from the 5th parameter.

3D Shapes

GDL Reference Guide 161

Example 1:

CUTPLANE 2, 2, 4
CUTPLANE -2, 2, 4
CUTPLANE -2, -2, 4
CUTPLANE 2, -2, 4
ADD -1, -1, 0
BRICK 2, 2, 4
DEL 1
CUTEND
CUTEND
CUTEND
CUTEND

Example 2:

CUTPLANE
SPHERE 2
CUTEND

CUTPLANE 1, 1, 0, 1
SPHERE 2
CUTEND

3D Shapes

GDL Reference Guide 162

Example 3:

CUTPLANE 1.8, 1.8, 1.8
SPHERE 2
CUTEND

CUTPLANE 1.8, 1.8, 1.8, 1
SPHERE 2
CUTEND

Example 4:

CUTPLANE 60
BRICK 2, 2, 2
CUTEND

CUTPLANE -120
BRICK 2, 2, 2
CUTEND

3D Shapes

GDL Reference Guide 163

CUTPOLY
CUTPOLY n,
 x1, y1, ..., xn, yn
 [, x, y, z]
[statement1
statement2
...
statementn]
CUTEND
Similarly to the CUTPLANE command, parameters of CUTPOLY refer to the current coordinate system. The polygon cannot be self-
intersecting. The direction of cutting is the Z axis or an optional (x, y, z) vector can be specified. Mirroring transformations affect the cutting
direction in an unexpected way - to get a more straightforward result, use the CUTFORM command.

Example 1:

3D Shapes

GDL Reference Guide 164

ROTX 90
MULZ -1
CUTPOLY 3,
 0.5, 1,
 2, 2,
 3.5, 1,
 -1.8, 0, 1
DEL 1
BPRISM_ "Brick-Red", "Brick-Red", "Brick-White",
 4, 0.9, 7,
 0.0, 0.0, 15,
 6.0, 0.0, 15,
 6.0, 3.0, 15,
 0.0, 3.0, 15
CUTEND

Example 2:

a=1.0
d=0.1
GOSUB "rect_cut"
ROTX 90
GOSUB "rect_cut"
DEL 1
ROTY -90
GOSUB "rect_cut"
DEL 1
BLOCK a, a, a
CUTEND
CUTEND
CUTEND
END
"rect_cut":
 CUTPOLY 4,
 d, d,
 a-d, d,
 a-d, a-d,
 d, a-d
 RETURN

3D Shapes

GDL Reference Guide 165

Example 3:

ROTX 90
FOR i=1 TO 3
 FOR j=1 TO 5
 CUTPOLY 4,
 0, 0, 1, 0,
 1, 1, 0, 1
 ADDX 1.2
 NEXT j
 DEL 5
 ADDY 1.2
NEXT i
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 6.2, 3.8, 1
FOR k=1 TO 15
 CUTEND
NEXT k
DEL TOP

CUTPOLYA
CUTPOLYA n, status, d,
 x1, y1, mask1, ..., xn, yn, maskn [,
 x, y, z]
[statement1
statement2
...
statementn]
CUTEND
Similar to the CUTPOLY command, but with the possibility to control the visibility of the edges of the generated polygons. The cutting form
is a half-infinite tube with the defined polygonal cross-section. If the end of the cutting form hangs down into the body, it will cut out the
corresponding area.

3D Shapes

GDL Reference Guide 166

i

Y

X

Z

jj

j
i+1

1

2 3

status: controls the treatment of the generated cut polygons.
1: use the attributes of the body for the generated polygons and edges,
2: generated cut polygons will be treated as normal polygons.

d: the distance between the local origin and the end of the half-infinite tube.
0: means a cut with an infinite tube.

maski: similar to the PRISM_ command.
maski = j1 + 2*j2 + 4*j3 + 64*j7, where each j can be 0 or 1.

3D Shapes

GDL Reference Guide 167

Example:

ROTX 90
FOR i=1 TO 3
 FOR j=1 TO 5
 CUTPOLYA 6, 1, 0,
 1, 0.15, 5,
 0.15, 0.15, 900,
 0, 90, 4007,
 0, 0.85, 5,
 0.85, 0.85, 900,
 0, 90, 4007
 ADDX 1
 NEXT j
 DEL 5
 ADDY 1
NEXT i
DEL NTR()-1
ADD -0.2, -0.2, 0
BRICK 5.4, 3.4, 0.5
FOR k=1 TO 15
 CUTEND
NEXT k
DEL TOP

3D Shapes

GDL Reference Guide 168

CUTSHAPE
CUTSHAPE d [, status]
[statement1 statement2 ... statementn]
CUTEND
Cuts a block with "d" thickness, infinite length (both sides of the y axis) and semi-infinite height (above the xy plane).
status: controls the treatment of the generated cut polygons. If not specified (for compatibility reasons) the default value is 3.
status = j1 + 2*j2, where each j can be 0 or 1.
j1: use the attributes of the body for the generated polygons and edges,
j2: generated cut polygons will be treated as normal polygons.

Example:

FOR i = 1 TO 5
 ADDX 0.4 * i
 ADDZ 2.5
 CUTSHAPE 0.4
 DEL 2
 ADDX 0.4
NEXT i
DEL TOP
BRICK 4.4, 0.5, 4
FOR i = 1 TO 5
 CUTEND
NEXT i

CUTFORM
CUTFORM n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1 [, mat1],
 ...
 xn, yn, maskn [, matn]
Similar to the CUTPOLYA command, but with the possibility to control the form and extent of the cutting body.
method: controls the form of the cutting body.
1: prism shaped,
2: pyramidal,

3D Shapes

GDL Reference Guide 169

3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry is ignored).

rx, ry, rz

d

z
x
y

rx, ry, rz

d

z
x
y

rx, ry, rz

d

z
x
y

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
j1: use the attributes of the body for the generated polygons and edges,
j2: generated cut polygons will be treated as normal polygons,
j4: define the limit of the cut (with j5),
j5: define the limit of the cut (with j4):
j6: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM
command),
j7: edges generated by the bottom of the cutting body will be invisible,
j8: edges generated by the top of the cutting body will be invisible,
j9: cutting shape has custom side materials (mati).
j4 = 0 and j5 = 0: finite cut
j4 = 0 and j5 = 1: semi-infinite cut
j4 = 1 and j5 = 1: infinite cut

rx, ry, rz: these three coordinates define the direction of cutting if the cutting form is prism-shaped; these three coordinates define
the top point of the pyramid if the method of cutting is pyramidal; rx-rz coordinates define the end edge of the wedge and ry is ignored
if the cutting from is wedge-shaped

d: defines the distance along rx, ry, rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then the start
of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction defined by rx, ry, rz.

3D Shapes

GDL Reference Guide 170

If the cut is semi-infinite, then the start of the cutting body will be at a distance of d along the direction defined by rx, ry, rz, and the direction
of the semi-infinite cut will be in the opposite direction defined by rx, ry, rz.

mask: defines the visibility of the edges of the cutting body.
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 64*j7, where each j can be 0 or 1.
j1: the polygon will create a visible edge upon entry into the body being cut (except when cutting solid body with wedge-shaped cutform,
see below),
j2: the lengthwise edge of the cutting form will be visible,
j3: polygon will create a visible edge upon exiting the body being cut (except when cutting solid body with wedge-shaped cutform, see
below),
j4: the bottom edge of the cutting form will be visible,
j5: the top edge of the cutting form will be visible,
j7: controls the viewpoint dependent visibility of the lengthwise edge.
In case of cutting solid body with wedge-shaped cutform the values for visibility of entry-edges and exit-edges (j1 and j3) are swapped.
This behavior is kept for compatibility reasons.

mati: side material of the cutting shape (when status j9 = 1)

CUTFORM{2}
CUTFORM{2} n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1 [, mat1],
 ...
 xn, yn, maskn [, matn]
CUTFORM{2} is an extension of the CUTFORM command with the possibility of using inline material definition, that means materials defined
in GDL script locally also can be used next to materials defined in global material definitions.

SOLID GEOMETRY COMMANDS
GDL is capable of performing specialized 3D operations between solids represented by groups. These operations can be one of the following:

3D Shapes

GDL Reference Guide 171

ADDGROUP forming the Boolean union of two solids

SUBGROUP forming the Boolean difference of two solids

ISECTGROUP forming the Boolean intersection of two solids

ISECTLINES calculating the intersection lines of two solids

SWEEPGROUP sweeping a solid along a vector

3D Shapes

GDL Reference Guide 172

A GDL solid is composed of one or more lumps that appear as separated bodies in the model. A lump has exactly one outer shell and may
contain voids. (Voids can be described as "negative" inner shells inside a lump.) The solid in the drawing below is composed of two lumps in
such a way that one of them contains a void.

GDL bodies such as BLOCK, SPHERE, etc., appear as outer shells in groups. By means of the following construction the user is capable of
putting more than one shell in a solid (note the BODY -1 statement):
GROUP "myGroup"
 BLOCK 1,1,1
 BODY -1
 ADDX 1
 BLOCK 1,1,1
ENDGROUP
The above solid contains two lumps; each of them is composed of one shell. Voids can be defined by means of primitives, or can occur as a
result of a Boolean difference (e.g. subtracting a small cube from the middle of a big one).
See also the section called “Primitive Elements”.
Although group operations are intended to work with solid objects, they can be applied to surfaces, wireframes or hybrid models, too. (Hybrid
models are basically surfaces that may contain edges without neighboring faces.) The result of the operations on such models are summarized
in the following tables:

3D Shapes

GDL Reference Guide 173

Table 1. Union (base » tool)

solid base surface base wireframe base hybrid base

solid tool solid result surface result (merging) wireframe result (merging) hybrid result (merging)

surface tool surface result (merging) surface result (merging) hybrid result (merging) hybrid result (merging)

wireframe tool wireframe result (merging) hybrid result (merging) wireframe result (merging) hybrid result (merging)

hybrid tool hybrid result (merging) hybrid result (merging) hybrid result (merging) hybrid result (merging)

Table 2. Difference (base\tool)

solid base surface base wireframe base hybrid base

solid tool solid result surface result wireframe result hybrid result

surface tool surface base (no effect) surface base (no effect) hybrid base (no effect) hybrid base (no effect)

wireframe tool wireframe base (no effect) hybrid base (no effect) wireframe base (no effect) hybrid base (no effect)

hybrid tool hybrid base (no effect) hybrid base (no effect) hybrid base (no effect) hybrid base (no effect)

Table 3. Intersection (base « tool)

solid base surface base wireframe base hybrid base

solid tool solid result surface result wireframe result hybrid result

surface tool surface result empty result empty result empty result

wireframe tool wireframe result empty result empty result empty result

hybrid tool hybrid result empty result empty result empty result

3D Shapes

GDL Reference Guide 174

Table 4. Intersection lines (base « tool)

solid base surface base wireframe base hybrid base

solid tool wireframe result wireframe result empty result wireframe result

surface tool wireframe result empty result empty result empty result

wireframe tool empty result empty result empty result empty result

hybrid tool wireframe result empty result empty result empty result

Table 5. Sweeping

solid surface wireframe hybrid

valid result surface base (no effect) wireframe base (no effect) hybrid base (no effect)

Surfaces can be explicitly generated by using the MODEL SURFACE command, or implicitly by leaving out non-neighboring face polygons
from the model. Wireframes are produced either by using the MODEL WIRE statement or by defining objects without face polygons. Hybrid
models can only be generated indirectly by leaving out neighboring face polygons from the model.
In the majority of the cases the required model is solid. GDL bodies appear as shells in group definitions, so in order to achieve fast and reliable
operation, the geometric correctness of the generated shells is a critical issue. Handling degenerated objects loads the GDL engine and causes
the desired operation to take more time to complete. The main rule to be considered regarding the efficient use of GDL group operations
can be summarized as follows: model by conforming to existing physical presence of spatial objects. In practice this can be expressed by the
following guidelines:
• Avoid self-intersecting objects.
• Avoid self-touching objects (apply small gaps).
• Avoid zero-sized portions of objects (apply small thickness).
According to the above, these rules are to be followed for shells (defined by bodies), not for solids (defined by groups). (The solid produced
by the script in the Group construction above is modeled properly, since the constituent shells touch each other but the shells, themselves,
are geometrically correct.)

GROUP - ENDGROUP
GROUP "name"
 [statement1 ... statementn]
ENDGROUP

3D Shapes

GDL Reference Guide 175

Group definition. All bodies between the corresponding GROUP - ENDGROUP statements will be part of the "name" group. Groups are not
actually generated (placed), they can be used in group operations or placed explicitly using the PLACEGROUP command. Group definitions
cannot be nested, but macro calls containing group definitions and PLACEGROUP commands using other groups can be included.
Group names must be unique inside the current script. Transformations, cutplanes outside the group definition have no effect on the group
parts; transformations, cutplanes used inside have no effect on the bodies outside the definition. Group definitions are transparent to attribute
DEFINEs and SETs (pens, materials, fills); attributes defined/set before the definition and those defined/set inside the definition are all
effective.

ADDGROUP
ADDGROUP (g_expr1, g_expr2)
ADDGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])
ADDGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

SUBGROUP
SUBGROUP (g_expr1, g_expr2)
SUBGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])
SUBGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

ISECTGROUP
ISECTGROUP (g_expr1, g_expr2)
ISECTGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])
ISECTGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])
g_expr1: identifier of the base group.
g_expr2: identifier of the tool group.
edgeColor: the color of the new edge when it differs from 0.
materialId: the material of the new face when it differs from 0.
materialColor: the color of the new face when the materialId is 0 and it differs from 0.
operationStatus: status control of the operation.
operationStatus = j1 + 2*j2, where each j can be 0 or 1.
j1: generated new edges will be invisible.
j2: cut polygons of the result inherit material and texture projection from the corresponding polygons of the tool group.

3D Shapes

GDL Reference Guide 176

ISECTLINES
ISECTLINES (g_expr1, g_expr2)
Group operations: addition, subtraction, intersection, intersection lines. The return value is a new group, which can be placed using the
PLACEGROUP command, stored in a variable or used as a parameter in another group operation. Group operations can be performed
between previously defined groups or groups result from any other group operation. g_expr1, g_expr2 are group type expressions. Group
type expressions are either group names (string expressions) or group type variables or any combination of these in operations which result in
groups. Note that the operations ADDGROUP, ISECTGROUP and ISECTLINES are symmetric in their parameterization while the order
of parameter matters for SUBGROUP.

PLACEGROUP
PLACEGROUP g_expr
Placing a group is the operation in which bodies are actually generated. Cutplanes and transformations are effective, the group expression is
evaluated and the resulting bodies are stored in the 3D data structure.

KILLGROUP
KILLGROUP g_expr
Clears the bodies of the specified group from the memory. After a KILLGROUP operation the group becomes empty. The names of killed
groups cannot be reused in the same script. Clearing is executed automatically at the end of the interpretation or when returning from macro
calls. For performance reasons this command should be used when a group is no longer needed.

3D Shapes

GDL Reference Guide 177

Example:

GROUP "box"
 BRICK 1, 1, 1
ENDGROUP
GROUP "sphere"
 ADDZ 1
 SPHERE 0.45
 DEL 1
ENDGROUP
GROUP "semisphere"
 ELLIPS 0.45, 0.45
ENDGROUP
GROUP "brick"
 ADD -0.35, -0.35, 0
 BRICK 0.70, 0.70, 0.35
 DEL 1
ENDGROUP
! Subtracting the "sphere" from the "box"
result_1=SUBGROUP("box", "sphere")
! Intersecting the "semisphere" and the "brick"
result_2=ISECTGROUP("semisphere", "brick")
! Adding the generated bodies
result_3=ADDGROUP(result_1, result_2)
PLACEGROUP result_3
KILLGROUP "box"
KILLGROUP "sphere"
KILLGROUP "semisphere"
KILLGROUP "brick"

SWEEPGROUP
SWEEPGROUP (g_expr, x, y, z)
Returns a group that is created by sweeping the group parameter along the given direction. The command works for solid models only.
SWEEPGROUP{2} (g_expr, x, y, z)
The difference between SWEEPGROUP and SWEEPGROUP{2} is that in the former case the actual transformation matrix is applied again
to the direction vector of the sweeping operation with respect to the current coordinate system. (In the case of SWEEPGROUP, the current
transformation is applied to the direction vector twice with respect to the global coordinate system.)

3D Shapes

GDL Reference Guide 178

SWEEPGROUP{3} (g_expr, x, y, z, edgeColor, materialId, materialColor, method)
This version adds a new method selection to SWEEPGROUP{2} and works for surface models also.
edgeColor: the color of the new edge when it differs from 0.
materialId: the material of the new face when it differs from 0.
materialColor: the color of the new face when the materialId is 0 and it differs from 0.
method: controls the ending shape of the resulting body.
0: same as SWEEPGROUP{2}, both ends come from the originating body,
1: the start comes from the originating body, the sweep end is flat

SWEEPGROUP{4} (g_expr, x, y, z, edgeColor, materialId, materialColor, method, status)
This version adds a new status parameter to SWEEPGROUP{3}.
status: Controls attributes of the result.
status = 2*j2, where each j can be 0 or 1.
j2: Keep per-polygon texture mapping parameters on the sweeped result (see the PGON command for details).

SWEEPGROUP{5} (g_expr, x, y, z, edgeColor, materialId, materialColor, method, status)
SWEEPGROUP{5} is an extension of the SWEEPGROUP{4} command with the possibility of using inline material definition, that means
materials defined in GDL script locally also can be used next to materials defined in global material definitions.
Compatibility: introduced in ARCHICAD 22.

Example:

GROUP "the_sphere"
 SPHERE 1
ENDGROUP
PLACEGROUP SWEEPGROUP{2} ("the_sphere", 2, 0, 0)
ADDX 5
PLACEGROUP SWEEPGROUP{3} ("the_sphere", 2, 0, 0, 4, 0, 4, 1)
del 1

3D Shapes

GDL Reference Guide 179

CREATEGROUPWITHMATERIAL
CREATEGROUPWITHMATERIAL (g_expr, repl_directive, pen, material)
Returns a group that is created by replacing all pens and/or materials in group g_expr.
g_expr: group expression identifying the base group.
repl_directive:
repl_directive = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: replace pen,
j2: replace material,
j4: make edges invisible.

pen: replacement pen index.
material: replacement material index.

BINARY 3D
BINARY
BINARY mode [, section, elementID]
Special command to include inline binary objects into a GDL macro. A set of vertices, vectors, edges, polygons, bodies and materials is read
from a special section of the library part file. These are transformed according to the current transformations and merged into the 3D model.
The data contained in the binary section is not editable by the user.
mode: defines pencolor and material attribute definition usage.
0: the current PEN and MATERIAL settings are in effect,
1: the current PEN and MATERIAL settings have no effect. The library part will be shown with the stored colors and material definitions.
Surface appearance is constant,
2: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by current settings,
3: the stored PEN and MATERIAL settings are used, non-defined materials are replaced by the stored default attributes.

section: index of the binary part, from 1 to 16.
0: you can refer simultaneously to all the existing binary parts,
1: Only these sections can be saved from within GDL, BINARY commands without the section argument will also refer to this,
2-16: can be used by third party tools.

elementID: ID of an element of this binary part. This parameter is generated during the import process.

3D Shapes

GDL Reference Guide 180

If you open files with a different data structure (e.g., DXF or ZOOM) their 3D description will be converted into binary format.
You can save a library part in binary format from the main Library Part editing window through the Save as... command. If the Save in binary
format checkbox is marked in the Save as... dialog box, the GDL text of the current library part will be replaced with a binary description.
Hint: Saving the 3D model after a 3D cutaway operation in binary format will save the truncated model. This way, you can create cut shapes.
You can only save your library part in binary format if you have already generated its 3D model.
By replacing the GDL description of your library part with a binary description you can considerably reduce the 3D conversion time of the
item. On the other hand, the binary 3D description is not parametric and takes more disk space than an algorithmic GDL script.

2D Shapes

GDL Reference Guide 181

2D SHAPES
This chapter presents the commands used for generating shapes in 2D from simple forms such as lines and arcs to complex polygons and splines, and the definition of text
elements in 2D. It also covers the way binary data is handled in 2D and the projection of the shape created by a 3D script into the 2D view, thereby ensuring coherence
between the 3D and 2D appearance of objects. Further commands allow users to place graphic elements into element lists created for calculations.

DRAWING ELEMENTS

HOTSPOT2
HOTSPOT2 x, y [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]

x

y

(x,y)

unID: the unique identifier of the hotspot in the 2D Script. Useful if you have a variable number of hotspots.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be

passed as well.
customDescription: custom description string of the displayed parameter in the information palette. When using this option,

displayParam must be set as well (use paramReference for default).
See Graphical Editing Using Hotspots for information on using HOTSPOT2.

HOTLINE2
HOTLINE2 x1, y1, x2, y2, unID
Status line definition between two points. Status line is a line which is recognized by the intelligent cursor but it is not visible in itself. Can have
a unique ID for associative dimensioning purpose.

2D Shapes

GDL Reference Guide 182

HOTARC2
HOTARC2 x, y, r, startangle, endangle, unID
Status arc definition with its centerpoint at (x, y) from the angle startangle to endangle, with a radius of r. Status arc is an arc which is recognized
by the intelligent cursor but it is not visible in itself. Can have a unique ID for associative dimensioning purpose.

LINE2
LINE2 x1, y1, x2, y2
Line definition between two points.

x

y

(x1, y1)

(x2, y2)

RECT2
RECT2 x1, y1, x2, y2
Rectangle definition by two nodes. The two points are on the diagonal of the rectangle, the sides are parallel to current X and Y axes.

x

y

(x1, y1)

(x2, y2)

POLY2
POLY2 n, frame_fill, x1, y1, ..., xn, yn

2D Shapes

GDL Reference Guide 183

An open or closed polygon with n nodes.

x

y

1 2

n

Restriction of parameters:
n >= 2

n: number of nodes.
x1, y1, ..., xn, yn: coordinates of each nodes.
frame_fill:
frame_fill = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: draw contour
j2: draw fill
j3: close an open polygon

POLY2_
POLY2_ n, frame_fill, x1, y1, s1, ..., xn, yn, sn

x

y

1 2

n

2D Shapes

GDL Reference Guide 184

Similar to the POLY2 command, but any of the edges can be omitted. If si = 0, the edge starting from the (xi,yi) apex will be omitted.
If si = 1, the vertex should be shown. si = -1 is used to define holes directly. You can also define arcs and segments in the polyline
using additional status code values.
Restriction of parameters:
n >= 2

n: number of nodes.
x1, y1, ..., xn, yn: coordinates of each nodes.
frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: draw contour,
j2: draw fill,
j3: close an open polygon,
j4: local fill orientation,
j6: fill is cut fill (default is drafting fill),
j7: fill is cover fill (only if j6 = 0, default is drafting fill).

si: Status values:
si = j1 + 16*j5 + 32*j6, where each j can be 0 or 1.
j1: next segment is visible,
j5: next segment is inner line (if 0, generic line),
j6: next segment is contour line (effective only if j5 is not set),
-1: end of a contour.

Default line property for POLY2_ lines is 0 (generic line), the LINE_PROPERTY command has no effect on POLY2_ edges. Additional status
codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

POLY2_A
POLY2_A n, frame_fill, fill_pen,
 x1, y1, s1, ..., xn, yn, sn

2D Shapes

GDL Reference Guide 185

POLY2_B
POLY2_B n, frame_fill,
 fill_pen, fill_background_pen,
 x1, y1, s1, ..., xn, yn, sn
Advanced versions of the POLY2_ command, with additional parameters: the fill pen and the fill background pen. All other parameters are
similar to those described at the POLY2_ command.
fill_pen: fill pencolor number.
fill_background_pen: fill background pencolor number.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

POLY2_B{2}
POLY2_B{2} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1, ..., xn, yn, sn
Advanced version of the POLY2_B command where the hatching origin and direction can be defined.
frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: draw contour
j2: draw fill
j3: close an open polygon
j4: local fill orientation
j5: global fill origin (effective only if j4 is set)
j6: fill in cut category (distinctive with j7, drafting category if none is set)
j7: fill in cover category (distinctive with j6, drafting category if none is set).

fillOrigoX: X coordinate of the fill origin.
fillOrigoY: Y coordinate of the fill origin.
fillAngle: direction angle of fill.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

2D Shapes

GDL Reference Guide 186

POLY2_B{3}
POLY2_B{3} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy, x1, y1, s1, ..., xn, yn, sn
Advanced version of the POLY2_B command, where the orientation of the fill can be defined using a matrix.
frame_fill:
frame_fill = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1-j7: similar as for previous POLY2_ commands,
j8: use sloped fill.

mxx, mxy, myx, myy: if j8 is set, this matrix defines the orientation of the fill.
Additional status codes allow you to create segments and arcs in the planar polyline using special constraints.
See the section called “Additional Status Codes” for details.

POLY2_B{4}
POLY2_B{4} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn
Advanced version of POLY2_ B{3}, where the inner radius of radial gradient fill can be set.
gradientInnerRadius: inner radius of the gradient in case radial gradient fill is selected for the polygon.

POLY2_B{5}
POLY2_B{5} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn
Advanced version of POLY2_ B{4}, where fill distortion can be controlled in an enhanced way.
frame_fill:

2D Shapes

GDL Reference Guide 187

frame_fill = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: draw contour
j2: draw fill
j3: close an open polygon.

fillcategory:
0: Draft,
1: Cut,
2: Cover.

distortion_flags:
distortion_flags = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
The valid value for distortion_flags is between 0 and 127. Don’t use value out of this range.
j1: the fill origin’s X coordinate is the global origin’s X coordinate, meaningful only when j4 is set. The fillOrigo is the origin (0,0) projected
on the line of the (mxx, mxy) vector,
j2: the fill origin’s Y coordinate is the global origin’s Y coordinate, meaningful only when j4 is set,
j3: create circular distortion using the innerRadius parameter,
j4: use local orientation, use the distortion matrix (mij parameters),
j5: (effective for symbol fills only) reset the pattern’s X size to the defined X vector’s length (mxx, mxy),
j6: (effective for symbol fills only) reset the pattern’s Y size to the defined Y vector’s length (myx, myy),
j7: (effective for symbol fills only) keep proportion of symbol fill pattern; effective only if one of j5 and j6 is set.

innerRadius: radius for circular fill distortion; the origin of the base circle will be placed on the Y fill axis in the (0, -innerRadius) position.

POLY2_B{6}
POLY2_B{6} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, pen1, linetype1, ..., xn, yn, sn, penn, linetypen
Advanced version of POLY2_B{5}, where contour attributes (pen and linetype) can be controlled individually for each contour segment.
peni: pen index of the contour line starting from control point i.
linetypei: line type index of the contour line starting from control point i.
Compatibility: introduced in ARCHICAD 21.

2D Shapes

GDL Reference Guide 188

ARC2
ARC2 x, y, r, alpha, beta
An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r.
Alpha and beta are in degrees.

x

y

(x, y)

r

alpha

beta

CIRCLE2
CIRCLE2 x, y, r
A circle with its center at (x, y), with a radius of r.

x

y r

(x, y)

2D Shapes

GDL Reference Guide 189

SPLINE2
SPLINE2 n, status, x1, y1,
 angle1, ..., xn, yn, anglen

x

y

1
i

n

anglei

(xi,yi)

Spline, with n control points. The tangent of the spline in the control point (xi, yi) is defined by anglei, the angle with the x axis in degrees.
Restriction of parameters:
n >= 2

si: Status values:
0: default,
1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,
2: automatically smoothed spline; the angle parameter value of the nodes between the first and the last node is not used when generating
the spline. An internal autosmoothing algorithm is used.

Example 1:

SPLINE2 5, 2,
 0, 0, 60,
 1, 2, 30,
 1.5, 1.5, -30,
 3, 4, 45,
 4, 3, -45

2D Shapes

GDL Reference Guide 190

Example 2:

n = 5
FOR i = 1 TO n
 SPLINE2 4, 0,
 0.0, 2.0, 135.0,
 -1.0, 1.8, 240.0,
 -1.0, 1.0, 290.0,
 0.0, 0.0, 45.0
 MUL2 -1.0, 1.0
 SPLINE2 4, 0,
 0.0, 2.0, 135.0,
 -1.0, 1.8, 240.0,
 -1.0, 1.0, 290.0,
 0.0, 0.0, 45.0
 DEL 1
 SPLINE2 4, 0,
 0.0, 2.0, 100.0,
 0.0, 2.5, 0.0,
 0.0, 2.4, 270.0,
 0.0, 2.0, 270.0
 ADD2 2.5, 0
NEXT i

SPLINE2A
SPLINE2A n, status, x1, y1, angle1, length_previous1, length_next1,
 ...
 xn, yn, anglen, length_previousn,
 length_nextn

2D Shapes

GDL Reference Guide 191

x

y

1
i

n

anglei

(xi,yi)

len
_p

re
v i

len
_n

ex
t i

Extension of the SPLINE2 command (Bézier spline), used mainly in automatic 2D script generation because of its complexity.
For more details, see “Lines / Drawing Splines” in the Documentation chapter of the ARCHICAD Help.
si: Status values:
0: default,
1: closed spline; the last and first nodes of the spline will become connected, thus closing the spline,
2: automatically smoothed spline; the angle, length_previousi and length_nexti parameter values of the nodes between the first and the
last node are not used when generating the spline. An internal autosmoothing algorithm is used.

xi, yi: control point coordinates.
length_previousi, length_nexti: tangent lengths for the previous and the next control points.
anglei: tangent direction angle.

2D Shapes

GDL Reference Guide 192

Example:

SPLINE2A 9, 2,
 0.0, 0.0, 0.0, 0.0, 0.0,
 0.7, 1.5, 15, 0.9, 1.0,
 1.9, 0.8, 72, 0.8, 0.3,
 1.9, 1.8, 100, 0.3, 0.4,
 1.8, 3.1, 85, 0.4, 0.5,
 2.4, 4.1, 352, 0.4, 0.4,
 3.5, 3.3, 338, 0.4, 0.4,
 4.7, 3.7, 36, 0.4, 0.8,
 6.0, 4.6, 0, 0.0, 0.0

PICTURE2
PICTURE2 expression, a, b, mask

PICTURE2{2}
PICTURE2{2} expression, a, b, mask
Can be used in 2D similarly to the PICTURE command in 3D. Unlike in 3D, the mask values have no effect on 2D pictures.
A string type expression means a file name, a numerical expression means an index of a picture stored in the library part. A 0 index is a special
value, it refers to the preview picture of the library part. For PICTURE2{2} mask = 1 means that exact white colored pixels are transparent.
Other pictures can only be stored in library parts when saving the project or selected elements containing pictures as GDL objects.

TEXT ELEMENT

TEXT2
TEXT2 x, y, expression
The value of the calculated numerical or string type expression is written in the set style at the x, y coordinates.
See also the [SET] STYLE command and the DEFINE STYLE command.

2D Shapes

GDL Reference Guide 193

x

y

(x,y)
ArchiCAD

RICHTEXT2
RICHTEXT2 x, y, textblock_name
Place a previously defined TEXTBLOCK.
For more details, see the TEXTBLOCK command.
x, y: X-Y coordinates of the richtext location.
textblock_name: the name of a previously defined TEXTBLOCK

BINARY 2D
FRAGMENT2
FRAGMENT2 fragment_index, use_current_attributes_flag
FRAGMENT2 ALL, use_current_attributes_flag
The fragment with the given index is inserted into the 2D Full View with the current transformations. If ALL is specified, all fragments are
inserted.
use_current_attributes_flag: defines whether or not the current attributes will be used.
0: the fragment appears with the color, line type and fill type defined for it,
1: the current settings of the script are used instead of the color, line type and fill type of the fragment.

3D PROJECTIONS IN 2D
PROJECT2
PROJECT2 projection_code, angle, method

2D Shapes

GDL Reference Guide 194

PROJECT2{2}
PROJECT2{2} projection_code, angle, method [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection]
Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The 2nd version
PROJECT2{2}, together with a previous [SET] FILL command, allows the user to control the fill background, origin and direction of
the resulting drawing from the 2D script. The SET FILL 0 shortcut to get an empty fill does not work in this case, you need to reference
an actual empty fill.
projection_code: the type of projection.
3: Top view,
4: Side view,
5: Side view 2,
6: Frontal axonometry,
7: Isometric axonometry,
8: Monometric axonometry,
9: Dimetric axonometry,
-3: Bottom view,
-6: Frontal bottom view,
-7: Isometric bottom view,
-8: Monometric bottom view,
-9: Dimetric bottom view.

angle: the azimuth angle set in the 3D Projection Settings dialog box.
method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).
1: wireframe,
2: hidden lines (analytic),
3: shading,
16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),
32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),
64: addition modifier: local fill orientation (effective only in shading mode),
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic,
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic,
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills,
1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.

2D Shapes

GDL Reference Guide 195

BackgroundColor: background color of the fill.
fillOrigoX: X coordinate of the fill origin.
fillOrigoY: Y coordinate of the fill origin.
filldirection: direction angle of fill.

Note: the [SET] FILL command is effective for PROJECT2{2}

2D Shapes

GDL Reference Guide 196

Example:

2D
PROJECT2 3, 270, 2

LINE_TYPE "DASHED"
ARC2 0, 0, A-B/3, 0, E

E = 270
A = 1
B = 0.2

ROT2 E
ADD2 A-B/3, 0
LINE2 0, 0, -0.05, -0.1
LINE2 0, 0, 0.05, -0.1

DEL 2

3D
n = 12
E = 270
D = 0.2
A = 1
B = 0.2

FOR i=1 TO n
 prism 4, D,
 -B/3, -B/2,
 -B/3, B/2,
 A-B/3, B/8,
 A-B/3, -B/8
 ADDZ D
 ROTz E/(n-1)
NEXT i

DEL n*2

2D Shapes

GDL Reference Guide 197

PROJECT2{3}
PROJECT2{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ..., namen=valuen]
Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The third version,
PROJECT2{3}, adds the possibility to define which parts of the projected model are required and to control separately the attributes of the
cut and view part, including the line type. You can also generate the projection with actual parameters set in the command.
method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).
1: wireframe,
2: hidden lines (analytic),
3: shading,
16: addition modifier: draws vectorial hatches (effective only in hidden line and shaded mode),
32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode),
64: addition modifier: local fill orientation (effective only in shading mode),
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.
1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.
4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.
8192: addition modifier: cut fills are slanted.
16384: addition modifier: enables transparency for transparent surfaces. Note that transparency in this case means full transparency for
surfaces with transmittance greater than 50, everything else is non-transparent.

Known limitation: lines of the cut part cannot be treated separately, only all lines together can be set to be inner or contour.
Compatibility note: up to ARCHICAD 19, cut polygons were generated with attributes defined by the SECT_FILL command or the SECT_ATTRS command
in the 3D script. From ARCHICAD 20 the attributes of the cut polygons are defined by the cover fill of the outer surfaces (in case the addition modifier 32 is not set).
parts: defines the parts to generate. The 1+2+4+8+16+32 value means all parts.
parts = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6, where each j can be 0 or 1.
The j1, j2, j3, j4, j5, j6 numbers represent whether the corresponding parts of the projected model are present (1) or omitted (0):

2D Shapes

GDL Reference Guide 198

j1: cut polygons (effective only in shading mode),
j2: cut polygon edges,
j3: view polygons,
j4: view polygon edges,
j5: project 3D hotspots as static 2D hotspots,
j6: project 3D hotlines and hotarcs (including related 3D hotspots converted to static 2D hotspots).

PROJECT2{4}
PROJECT2{4} projection_code, angle,
 useTransparency, statusParts,
 numCutplanes,
 cutplaneHeight1, ..., cutplaneHeightn,

 method1, parts1,
 cutFillIndex1,
 cutFillFgPen1, cutFillBgPen1,
 cutFillOrigoX1, cutFillOrigoY1, cutFillDirection1,
 cutLinePen1, cutLineType1,
 projectedFillIndex1,
 projectedFillFgPen1, projectedFillBgPen1,
 projectedFillOrigoX1, projectedFillOrigoY1,
 projectedFillDirection1,
 projectedLinePen1, projectedLineType1,
 ...
 method(numCutplanes+1)), parts(numCutplanes+1),
 cutFillIndex(numCutplanes+1),
 cutFillFgPen(numCutplanes+1), cutFillBgPen(numCutplanes+1),
 cutFillOrigoX(numCutplanes+1), cutFillOrigoY(numCutplanes+1),
 cutFillDirection(numCutplanes+1),
 cutLinePen(numCutplanes+1), cutLineType(numCutplanes+1),
 projectedFillIndex(numCutplanes+1),
 projectedFillFgPen(numCutplanes+1), projectedFillBgPen(numCutplanes+1),
 projectedFillOrigoX(numCutplanes+1), projectedFillOrigoY(numCutplanes+1),
 projectedFillDirection(numCutplanes+1),
 projectedLinePen(numCutplanes+1), projectedLineType(numCutplanes+1)
Compatibility: introduced in ARCHICAD 20.

2D Shapes

GDL Reference Guide 199

Creates a projection of the 3D script in the same library part and adds the generated lines to the 2D parametric symbol. The fourth version,
PROJECT2{4}, adds the possibility to define multiple cutting planes parallel to the X-Y plane, and to control the attributes of the cut and
projected parts of the slices, including the line type, pens and fills. The number of cutplanes can be zero, creating exactly one uncut slice
(numCutplanes+1).
useTransparency: can be 0 (no transparency) or positive integer (1: transparency enabled).
statusParts: defines the status parts to generate (hotlines, hotspots, hotarcs). The 1+2 value means all parts. Setting is applied for all slices.
statusParts = j1 + 2*j2, where each j can be 0 or 1.
The j1, j2 numbers represent whether the corresponding status parts of the projected model are present (1) or omitted (0):
j1: project 3D hotspots as static 2D hotspots,
j2: project 3D hotlines and hotarcs (including related 3D hotspots converted to static 2D hotspots).

numCutplanes: the number of defined cutplanes. Can be zero, but preferably more.
cutplaneHeighti: the position of each individually defined cutplane. Measured as length perpendicularly from the X-Y plane of the

object.
method: the chosen imaging method. If invalid or none is set, the default is hidden lines (2).
0: the current slice is not part of the projection,
1: wireframe,
2: hidden lines (analytic),
3: shading,
4: hidden lines with polygon: the polygon does not eliminate any polygon or line belonging to parts created with shading method, but
will cover/eliminate polygons and lines belonging to other wireframe/hidden line parts. Set it to Air Space for best result. Such exploded
polygons will behave in 2D according to slice order (will cover, but not eliminate shaded parts).
16: addition modifier: draws vectorial hatches (effective only in hidden line modes and shaded mode),
32: addition modifier: use current attributes instead of attributes from 3D (effective only in shading mode and hidden line with polygon
mode),
64: addition modifier: local fill orientation (effective only in shading mode and hidden line with polygon mode),
128: addition modifier: lines are all inner lines (effective only together with 32). Default is generic.
256: addition modifier: lines are all contour lines (effective only together with 32, if 128 is not set). Default is generic.
512: addition modifier: fills are all cut (effective only together with 32). Default is drafting fills.
1024: addition modifier: fills are all cover (effective only together with 32, if 512 is not set). Default is drafting fills.
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts.

2D Shapes

GDL Reference Guide 200

4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts.
8192: addition modifier: cut fills are slanted.

partsi: defines the parts to generate. The 1+2+4+8+64 value means all parts.
partsi = j1 + 2*j2 + 4*j3 + 8*j4 + 64*j7, where each j can be 0 or 1.
The j1, j2, j3, j4, j7 numbers represent whether the corresponding parts of the projected model are present (1) or omitted (0):
j1: cut polygons (effective only in shading mode),
j2: cut polygon edges,
j3: view polygons,
j4: view polygon edges,
j7: project pointclouds.

cutFillIndexi: fill type index of the cut part of the current slice.
cutFillFgPeni: fill pen of the cut part of the current slice.
cutFillBgPeni: fill background pen of the cut part of the current slice.
cutFillOrigoXi: X coordinate of the cut fill origin of the current slice.
cutFillOrigoYi: Y coordinate of the cut fill origin of the current slice.
cutFillDirectioni: direction angle of the cut fill of the current slice.
cutLinePeni: pen index of cut lines of the current slice.
cutLineTypei: line type of cut lines of the current slice.
projectedFillIndexi: fill type index of the projected part of the current slice.
projectedFillFgPeni: fill pen of the projected part of the current slice.
projectedFillBgPeni: fill background pen of the projected part of the current slice.
projectedFillOrigoXi: X coordinate of the projected fill origin of the current slice.
projectedFillOrigoYi: Y coordinate of the projected fill origin of the current slice.
projectedFillDirectioni: direction angle of the projected fill of the current slice.
projectedLinePeni: pen index of projected lines of the current slice.
projectedLineTypei: line type of projected lines of the current slice.

2D Shapes

GDL Reference Guide 201

DRAWINGS IN THE LIST
These commands only take effect when a list of elements is created.
When the library part is a special property type library part and is in some way associated to a library part (Object, Door, Window or Light)
placed on the floor plan, including the following commands in its 2D script will refer to the 2D and 3D part of that library part. This is a virtual
reference that is resolved during the listing process, using the 2D or 3D script of the currently listed element.

DRAWING2
DRAWING2 [expression]
Depending on the value of the expression, creates a drawing of the library part (expression = 0, default) or the label of the element (expression
= 1) associated with the Property Object containing this command.

DRAWING3
DRAWING3 projection_code, angle, method

DRAWING3{2}
DRAWING3{2} projection_code, angle, method [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection]
Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2 and PROJECT2{2}.
method: New method flags in DRAWING3{2}
3: shading,
32: use current attributes instead of attributes from 3D,
64: local fill orientation.

DRAWING3{3}
DRAWING3{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ..., namen=valuen]
Similarly to PROJECT2, creates a projection of the 3D script of the library part associated with the property library part containing this
command. All parameters are similar to those of PROJECT2, PROJECT2{2} and PROJECT2{3}.
method: New method flags in DRAWING3{3}
2048: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the view part of the
projection. By default they are effective for all parts,

2D Shapes

GDL Reference Guide 202

4096: addition modifier: modifiers 16, 32, 64, 128, 256, 512, 1024 and fill attribute parameters are effective only for the cut part of the
projection. By default they are effective for all parts,
8192: addition modifier: cut fills are slanted.
16384: addition modifier: enables transparency for transparent surfaces. Note that transparency in this case means full transparency for
surfaces with transmittance greater than 50, everything else is non-transparent.

Graphical Editing Using Hotspots

GDL Reference Guide 203

GRAPHICAL EDITING USING HOTSPOTS
Hotspot-based interactive graphical editing of length and angle type GDL parameters.
HOTSPOT x, y, z [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]
HOTSPOT2 x, y [, unID [, paramReference [, flags [, displayParam [, "customDescription"]]]]]
unID: unique identifier, which must be unique among the hotspots defined in the library part.
paramReference: parameter that can be edited by this hotspot using the graphical hotspot based parameter editing method.
displayParam: parameter to display in the information palette when editing the paramRefrence parameter. Members of arrays can be

passed as well.
customDescription: custom description string for the displayed parameter in the information palette. When using this option,

displayParam must be set as well (use paramReference for default). The value set for the moving type hotspot will be displayed only. It is
recommended to set the same description for all moving hotspots having the same base hotspot.

Examples of valid arguments:
D, Arr[5], Arr[2*I+3][D+1], etc.
flags: hotspot’s type + hotspot’s attribute:
type:
1: length type editing, base hotspot,
2: length type editing, moving hotspot,
3: length type editing, reference hotspot (always hidden),
4: angle type editing, base hotspot,
5: angle type editing, moving hotspot,
6: angle type editing, center of angle (always hidden),
7: angle type editing, reference hotspot (always hidden).

attribute: Can be zero or:
attribute = 128*j8 + 256*j9 + 512*j10 + 1024*j11, where each j can be 0 or 1.
j8: hide hotspot (meaningful for types: 1,2,4,5),
j9: editable base hotspot (for types: 1,4),
j10: reverse the angle in 2D (for type 6),
j11: use paramReference value as meters in paper space.

Graphical Editing Using Hotspots

GDL Reference Guide 204

To edit a length type parameter, three hotspots must be defined with types 1, 2 and 3. The positive direction of the editing line is given by
the vector from the reference hotspot to the base hotspot. The moving hotspot must be placed along this line at a distance determined by the
associated parameter’s value, measured from the base hotspot.

Reference (3) Base (1) Moving (2)

-1 0 x

To edit an angle type parameter, in 3D four hotspots must be defined with types 4, 5, 6 and 7. The plane of the angle is perpendicular to the
vector that goes from the center hotspot to the reference hotspot. The positive direction in measuring the angle is counter-clockwise if we look
at the plane from the reference hotspot. In 2D the plane is already given, so the reference hotspot is ignored, and the positive direction of
measuring the angle is by default counter-clockwise. This can be changed to clockwise by setting the 512 attribute flag for the center hotspot
(type 6). To be consistent, the vectors from the center hotspot to the moving and the base hotspots must be perpendicular to the vector from
the center to the reference hotspot. The moving hotspot must be placed at an angle determined by the associated parameter measured from
the base hotspot around the center hotspot.

Graphical Editing Using Hotspots

GDL Reference Guide 205

Center (6) Base (4)

Moving (5)

alpha

If several sets of hotspots are defined to edit the same parameter, hotspots are grouped together in the order of the execution of the hotspot
commands. If the editable attribute is set for a base hotspot, the user can also edit the parameter by dragging the base hotspot. Since the base
hotspot is supposed to be fixed in the object’s coordinate frame (i.e. its location must be independent of the parameter that is attached to it),
the whole object is dragged or rotated along with the base point. (As the parameter’s value is changing, the moving hotspot will not change
its location.)
Two length type sets of hotspots can be combined to allow editing of two parameters with only one dragging. If two are combined, the motion
of the hotspot is no longer constrained to a line but to the plane determined by the two lines of each set of length editing hotspots. In 3D, the
combination of three sets of length editing hotspots allows the hotspot to be placed anywhere in space. The two lines must not be parallel to
each other, and the three lines must not be on the same plane. A combined parameter editing operation is started if, at the location of the picked
point, there are two editable hotspots (moving or editable base) with different associated parameters. If parameters are designed for combined
editing, the base and reference hotspots are not fixed in the object’s coordinate frame, but must move as the other parameter’s value changes.
See illustration and example 2.

Graphical Editing Using Hotspots

GDL Reference Guide 206

Example 1: Angle editing in 2D
LINE2 0, 0, A, 0
LINE2 0, 0, A*COS(angle), A*SIN(angle)
ARC2 0, 0, 0.75*A, 0, angle
HOTSPOT2 0, 0, 1, angle, 6
HOTSPOT2 0.9*A, 0, 2, angle, 4
HOTSPOT2 0.9*A*COS(angle), 0.9*A*SIN(angle), 3,
angle, 5

Example 2: Combined length type editing with 2 parameters in 2D

54o

origin
(C=0, D=0) RefD BaseD

MovingD

MovingC

BaseC

RefC

user drags the hotspot here

C

D

origin
(C=0, D=0)

MovingD

MovingC

BaseC

RefC C

D

RefD BaseD

Graphical Editing Using Hotspots

GDL Reference Guide 207

! sideX, sideY parameters
RECT2 0, 0, A, B
RECT2 0, 0, sideX, sideY
HOTSPOT2 sideX, 0, 1, sideY, 1
HOTSPOT2 sideX, -0.1, 2, sideY, 3
HOTSPOT2 sideX, sideY, 3, sideY, 2
HOTSPOT2 0, sideY, 4, sideX, 1
HOTSPOT2 -0.1, sideY, 5, sideX, 3
HOTSPOT2 sideX, sideY, 6, sideX, 2

Example 3: Simple length type editing with 1 parameter

Graphical Editing Using Hotspots

GDL Reference Guide 208

!2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 0, 0, 3, corner_y, 1+128
HOTSPOT2 0, -1, 4, corner_y, 3
HOTSPOT2 0, corner_y, 5, corner_y, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, 0, corner_y
LINE2 1, 0, 0, corner_y
!3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT 0, 0, 0, 5, corner_y, 1+128
HOTSPOT 0, -1, 0, 6, corner_y, 3
HOTSPOT 0, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, 0, 0.5, 8, corner_y, 1+128
HOTSPOT 0, -1, 0.5, 9, corner_y, 3
HOTSPOT 0, corner_y, 0.5, 10, corner_y, 2

PRISM_ 4, 0.5,
 -1, 0, 15,
 1, 0, 15,
 0, corner_y, 15,
 -1, 0, -1

Graphical Editing Using Hotspots

GDL Reference Guide 209

Example 4: Combined length type editing with 2 parameters:

!2D SCRIPT:
HOTSPOT2 -1, 0, 1
HOTSPOT2 1, 0, 2
HOTSPOT2 corner_x, 0, 3, corner_y, 1+128
HOTSPOT2 corner_x, -1, 4, corner_y, 3
HOTSPOT2 corner_x, corner_y, 5, corner_y, 2
HOTSPOT2 0, corner_y, 6, corner_x, 1+128
HOTSPOT2 -1, corner_y, 7, corner_x, 3
HOTSPOT2 corner_x, corner_y, 8, corner_x, 2
LINE2 -1, 0, 1, 0
LINE2 -1, 0, corner_x, corner_y
LINE2 1, 0, corner_x, corner_y

Graphical Editing Using Hotspots

GDL Reference Guide 210

!3D SCRIPT:
HOTSPOT -1, 0, 0, 1
HOTSPOT -1, 0, 0.5, 2
HOTSPOT 1, 0, 0, 3
HOTSPOT 1, 0, 0.5, 4
HOTSPOT corner_x, 0, 0, 5, corner_y, 1+128
HOTSPOT corner_x, -1, 0, 6, corner_y, 3
HOTSPOT corner_x, corner_y, 0, 7, corner_y, 2
HOTSPOT 0, corner_y, 0, 8, corner_x, 1+128
HOTSPOT -1, corner_y, 0, 9, corner_x, 3
HOTSPOT corner_x, corner_y, 0, 10, corner_x, 2
HOTSPOT corner_x, 0, 0.5, 11, corner_y, 1+128
HOTSPOT corner_x, -1, 0.5, 12, corner_y, 3
HOTSPOT corner_x, corner_y, 0.5, 13, corner_y, 2
HOTSPOT 0, corner_y, 0.5, 14, corner_x, 1+128
HOTSPOT -1, corner_y, 0.5, 15, corner_x, 3
HOTSPOT corner_x, corner_y, 0.5, 16, corner_x, 2
PRISM_ 4, 0.5,
 -1, 0, 15,
 1, 0, 15,
 corner_x, corner_y, 15,
 -1, 0, -1

Status Codes

GDL Reference Guide 211

STATUS CODES
Status codes introduced in the following pages allow users to create segments and arcs in planar polylines using special constraints.
Planar polylines with status codes at nodes are the basis of many GDL elements: POLY2_, POLY2_A, POLY2_B, POLY2_B{2},
POLY2_B{3}, POLY2_B{4}, POLY2_B{5}, POLY_, PLANE_, PRISM_, CPRISM_, BPRISM_, FPRISM_, HPRISM_, SPRISM_,
SLAB_, CSLAB_, CROOF_, EXTRUDE, PYRAMID, REVOLVE, SWEEP, TUBE, TUBEA
Status codes allow you:
• to control the visibility of planar polyline edges
• to define holes in the polyline
• to control the visibility of side edges and surfaces
• to create segments and arcs in the polyline

STATUS CODE SYNTAX
si: The si number is a binary integer (between 0 and 127) or -1.
si = j1 + 2*j2 + 4*j3 + 8*j4 + 64*j7 [+ a_code] , where each j can be 0 or 1.
The j1, j2, j3, j4 numbers represent whether the vertices and the sides are present (1) or omitted (0):
j1: lower horizontal edge,
j2: vertical edge,
j3: upper horizontal edge,
j4: side face,
j7: special additional status value effective only when j2=1 and controls the viewpoint dependent visibility of the current vertical edge,
a_code: additional status code (optional), which allows you to create segments and arcs in the polyline,
j2=0: the vertical edge is always invisible
j2=1 and j7=1: the vertical edge is only visible when it is a contour observed from the current direction of view
j2=1 and j7=0: the vertical edge is always visible
Possible status values (the heavy lines denote visible edges):

Status Codes

GDL Reference Guide 212

invisible surface visible surface

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

si=-1 is used to define holes directly into the prism. It marks the end of the contour and the beginning of a hole inside of the contour. It
is also used to indicate the end of one hole’s contour and the beginning of another. Coordinates before that value must be identical to the
coordinates of the first point of the contour/hole. If you have used the -1 mask value, the last mask value in the parameter list must be -1,
marking the end of the last hole.
The holes must be disjoint and internal intersections are forbidden in the polygon for a correct shading/rendering result.

ADDITIONAL STATUS CODES
The following additional status codes allow you to create segments and arcs in the polyline using special constraints. They refer to the next
segment or arc. Original status code(s) are only effective where they are specified (a "+s" is included after the additional code).

Status Codes

GDL Reference Guide 213

Note
Resolution of arcs is controlled by directives described in the section called “Directives for 3D and 2D Scripts”. In case of the POLY2_
command, if the resolution is greater than 8, it generates real arcs; otherwise all generated arcs will be segmented.

Previous part of the polyline: current position and tangent is defined

Segment by absolute endpoint
x, y, s
where 0 < s < 100

0

x,y

Segment by relative endpoint
dx, dy, 100+s,

Status Codes

GDL Reference Guide 214

where 0 < s < 100

100
dx

dy

Segment by length and direction
l, a, 200+s,
where 0 < s < 100

200

l
a

Tangential segment by length
l, 0, 300+s,
where 0 < s < 100

Status Codes

GDL Reference Guide 215

300
l

Set start point
x1, y1, 600,

(x1,y1)
600

Close polyline
0, 0, 700,

700

Set tangent
ex, ey, 800,

Status Codes

GDL Reference Guide 216

800
ex

ey

Set centerpoint
x0, y0, 900,

900

x0,y0

Tangential arc to endpoint
x, y, 1000+s,
where 0 < s < 100

Status Codes

GDL Reference Guide 217

x,y

1000

Tangential arc by radius and angle
r, a, 2000+s,
where 0 < s < 100

r

a

2000

Arc using centerpoint and point on the final radius
x, y, 3000+s,
where 0 < s < 100

Status Codes

GDL Reference Guide 218

3000

x,y

Arc using centerpoint and angle
0, a, 4000+s,
where 0 < s < 100

4000 a

Full circle using centerpoint and radius
r, 360, 4000+s,
where 0 < s < 100

Status Codes

GDL Reference Guide 219

r

4000

In this case the s status refers to the whole circle.
All angle values are in degrees. Omitted coordinates marked by 0 (for codes 300, 700, 4000) can have any value.

Example 1:

Status Codes

GDL Reference Guide 220

EXTRUDE 21, 0, 0, 3, 1+2+4+16+32,
 0, 0, 0,
 7, 0, 0,
 7, 3, 1,
 6, 3, 1000, ! tangential arc to endpoint
 5, 3, 1001, ! tangential arc to endpoint
 1, 90, 2000, ! tangential arc by radius and angle
 2, 3, 1001, ! tangential arc to endpoint
 1, 3, 900, ! set centerpoint
 1, 2, 3000, ! arc using startpoint, centerpoint and point on final radius
 1, 2.5, 900, ! set centerpoint
 0, -180, 4001, ! arc using start point, centerpoint and angle
 1, 5, 1000, !tangential arc to endpoint
 -1, 0, 100, ! segment by (dx, dy)
 2, 225, 200, ! segment by (len, angle)
 -1, 0, 800, ! set tangent
 -1, 0, 1000, ! tangential arc to endpoint
 0, 0, -1, ! end of contour
 1, 1, 900, ! set centerpoint
 0.5, 360, 4000, ! full circle by centerpoint and radius
 3.5, 1.5, 900, ! set centerpoint
 1, 360, 4001 ! full circle by centerpoint and radius

Status Codes

GDL Reference Guide 221

Example 2:

EXTRUDE 2+5+10+10+2, 0, 0, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2.5, -1, 0,
 2.5, 1, 0,
 1.5, 1, 1,
 1.5, -1, 1001,
 2.5, -1, -1,
 0, 2.5, 600,
 0, -1, 800,
 1, 1.5, 1001,
 -1, 0, 800,
 0, 0.5, 1001,
 0, 1, 800,
 -1, 1.5, 1001,
 1, 0, 800,
 0, 2.5, 1001,
 0, 2.5, 700,
 -1.5, 0, 900,
 -2.5, 0, 600,
 -2.5, 1, 3000,
 -2.5, 1, 0,
 -1.5, 1, 0,
 -1.5, -1, 1001,
 -2.5, -1, 0,
 SQR(2)-1, 45, 200,
 -2.5, 0, 3000,
 -2.5, 0, 700,
 0, -1.5, 900,
 1, 360, 4000

Status Codes

GDL Reference Guide 222

Example 3:

EXTRUDE 3, 1, 1, 3, 1+2+4+16+32,
 0, 0, 900,
 3, 360, 4001,
 2, 360, 4000

Example 4:

Status Codes

GDL Reference Guide 223

ROTY-90
REVOLVE 9, 180, 16+32,
 7, 1, 0,
 6, 1, 0,
 5.5, 2, 0,
 5, 1, 0,
 4, 1, 0,
 3, 1, 900, ! set centerpoint
 0, 180, 4001, ! arc using startpoint, centerpoint and angle
 2, 1, 0,
 1, 1, 0

Attributes

GDL Reference Guide 224

ATTRIBUTES
In the first part of this chapter, directives influencing the interpretation of GDL statements are presented. Directives may define the smoothness
used for cylindrical elements, representation mode in the 3D view or the assignment of an attribute (color, material, text style, etc.) for the
subsequent shapes. Inline attribute definition is covered in the second part. This feature allows you to assign to your objects customized materials,
textures, fill patterns, line types and text styles that are not present in the current attribute set of your project.

DIRECTIVES
The influence of directives on the interpretation of the subsequent GDL statements remains in effect until the next directive or the end of the
script. Called scripts inherit the current settings: the changes have local influence. Returning from the script resets the settings as they were
before the macro call.

Directives for 3D and 2D Scripts
LET
[LET] varnam = n
Value assignment. The LET directive is optional. The variable will store the evaluated value of n.

RADIUS
RADIUS radius_min, radius_max
Sets smoothness for cylindrical elements and arcs in polylines.
A circle with a radius of r is represented:
• if r < radius_min, by a hexagon,
• if r >= radius_max, by a 36-edged polygon,
• if radius_min < r < radius_max, by a polygon of (6+30*(r-radius_min)/(radius_max-radius_min)) edges.
Arc conversion is proportional to this.
After a RADIUS statement, all previous RESOL and TOLER statements lose their effect.
Restriction of parameters:
r_min <= r_max

Attributes

GDL Reference Guide 225

Example:

RADIUS 1.1, 1.15
CYLIND 3.0, 1.0

RADIUS 0.9, 1.15
CYLIND 3.0, 1.0

RESOL
RESOL n
Sets smoothness for cylindrical elements and arcs in polylines. Circles are converted to regular polygons having n sides.
Arc conversion is proportional to this.
After a RESOL statement, any previous RADIUS and TOLER statements lose their effect.
Restriction of parameters:
n >= 3

Default:
RESOL 36

Attributes

GDL Reference Guide 226

Example:

RESOL 5
CYLIND 3.0, 1.0

RESOL 36
CYLIND 3.0, 1.0

TOLER
TOLER d
Sets smoothness for cylindrical elements and arcs in polylines. The error of the arc approximation (i.e., the greatest distance between the
theoretical arc and the generated chord) will be smaller than d.
After a TOLER statement, any previous RADIUS and RESOL statements lose their effect.

Attributes

GDL Reference Guide 227

Example:

TOLER 0.1
CYLIND 3.0, 1.0

TOLER 0.01
CYLIND 3.0, 1.0

Note
The RADIUS, RESOL and TOLER directives set smoothness for cylindrical 3D elements (CIRCLE, ARC, CYLIND, SPHERE,
ELLIPS, CONE, ARMC, ARME, ELBOW, REVOLVE) and arcs in 2D polylines using curved edges.

See the section called “Additional Status Codes”.

PEN
PEN n
Sets the color.
Restriction of parameters:
0 < n <= 255

Default:
PEN 1
if there is no PEN statement in the script.
(For library parts, default values come from the library part’s settings. If the script refers to a non-existing index, PEN 1 becomes the default
setting.)

Attributes

GDL Reference Guide 228

LINE_PROPERTY
LINE_PROPERTY expr
Defines the property for all subsequently generated lines in the 2D script (RECT2, LINE2, ARC2, CIRCLE2, SPLINE2, SPLINE2A,
POLY2, FRAGMENT2 commands) until the next LINE_PROPERTY statement. Default value is generic.
expr: possible values:
0: all lines are generic lines,
1: all lines are inner,
2: all lines are contour.

[SET] STYLE
[SET] STYLE name_string
[SET] STYLE index
All the texts generated afterwards will use that style until the next SET STYLE statement.
The index is a constant referring to a style stack in the internal data structure (negative indices mean indices in the data structure of inline
materials (previously defined in the GDL script)). This stack is modified during GDL analysis and can also be modified from within the program.
The use of the index instead of the style name is only recommended with the prior use of the IND function.
Default:
SET STYLE 0
(application font, size 5 mm, anchor = 1, normal face) if there is no SET STYLE statement in the script.

Directives Used in 3D Scripts Only
MODEL
MODEL WIRE
MODEL SURFACE
MODEL SOLID
Sets the representation mode in the current script.
MODEL WIRE: only wireframe, no surfaces or volumes. Objects are transparent.
MODEL SURFACE, MODEL SOLID: The generation of the section surfaces is based on the relation of the boundary surfaces, so that both
methods generate the same 3D internal data structure. Objects are opaque.
The only distinction can be seen after cutting away a part of the body:
MODEL SURFACE: the inside of bodies will be visible,

Attributes

GDL Reference Guide 229

MODEL SOLID: new surfaces may appear.
Default:
MODEL SOLID

Example: To illustrate the three modeling methods, consider the following three blocks:
MODEL WIRE
BLOCK 3,2,1
ADDY 4
MODEL SURFACE
BLOCK 3,2,1
ADDY 4
MODEL SOLID
BLOCK 3,2,1
After cutting them with a plane:

[SET] MATERIAL
[SET] MATERIAL name_or_index
All the surfaces generated afterwards will represent that material until the next MATERIAL statement. Surfaces in the BPRISM_, CPRISM_,
FPRISM_, HPRISM_, SPRISM_, CSLAB_, CWALL_, BWALL_, XWALL_, CROOF_, MASS, bodies are exceptions to this rule.
The index is a constant referring to a material stack in the internal data structure (negative indices mean indices in the data structure of inline
materials (previously defined in the GDL script)). This stack is modified during GDL analysis and can also be modified from within the program.
The use of the index instead of the material name is only recommended with the prior use of the IND function.
index 0 has a special meaning: surfaces use the color of the current pen and they have a matte appearance.
Default:
MATERIAL 0
if there is no MATERIAL statement in the script.
(For Library parts, default values are read from the Library part’s settings. If the script refers to a non-existing index, MATERIAL 0 becomes
the default setting.)

Attributes

GDL Reference Guide 230

[SET] BUILDING_MATERIAL
[SET] BUILDING_MATERIAL name_or_index
 [, cut_fill_pen [, cut_fill_bkgd_pen, [iOverrideFlag]]]
Compatibility: introduced in ARCHICAD 21.
All the shapes generated afterwards will represent the surface, cut fill type (in Section/Elevation), foreground and background pens of the
set building material.
cut_fill_pen: custom cut fill foreground pen index to override the index of the active building material attribute
cut_fill_bkgd_pen: custom cut fill background pen index to override the index of the active building material attribute
iOverrideFlag: enable "cut_fill_pen" and/or "cut_fill_bkgd_pen" to take effect
iOverrideFlag = j1 + 2*j2: , where each j can be 0 or 1.
j1: Override cut fill foreground pen with cut_fill_pen
j2: Override cut fill background pen with cut_fill_bkgd_pen
Override parameters are optional: if the "iOverrideFlag" is not set, or the DEFAULT keyword is used in any of the override pen index
parameters, the building material attributes will take effect.

Example: Overriding the cut fill background pen
BUILDING_MATERIAL buildingMatIndex, DEFAULT, cut_fill_bkgd_pen

All the surfaces generated afterwards will represent the surface of the building material until the next BUILDING_MATERIAL, MATERIAL,
SECT_FILL or SECT_ATTRS statement. Surfaces in the BPRISM_, CPRISM_, FPRISM_, HPRISM_, SPRISM_, CSLAB_, CWALL_,
BWALL_, XWALL_, CROOF_, MASS, bodies are exceptions to this rule.
In Section/Elevation, the displayed cut fill foreground and background pens will match the same attributes of the building material (or
the override parameters set in the command itself), until the next BUILDING_MATERIAL, MATERIAL, SECT_FILL or SECT_ATTRS
statement.
A previous BUILDING_MATERIAL statement has no further control of shapes generated after using SECT_FILL or SECT_ATTRS
statements. Shapes generated after using the following statements keep their BUILDING_MATERIAL settings: the MATERIAL statement
overrides only the surfaces of the generated shape, the SECT_ATTRS{2} statement controls the representation of the contour pen and line
type in section view only, while the rest of the attributes are still controlled the building material itself.
The index is a constant referring to a building material stack in the internal data structure. The use of the index instead of the building material
name is only recommended with the prior use of the IND function.
index 0 has a special meaning: the generated section eliminates the lines based on the fills.
Default:

Attributes

GDL Reference Guide 231

BUILDING_MATERIAL 0
if there is no BUILDING_MATERIAL statement in the script.
(For Library parts, default values are read from the Library part’s settings. If the script refers to a non-existing index, BUILDING_MATERIAL
0 becomes the default setting.)

SECT_FILL
SECT_FILL fill, fill_background_pen,
 fill_pen, contour_pen
or

SECT_ATTRS
SECT_ATTRS fill, fill_background_pen,
 fill_pen, contour_pen [, line_type]
Defines the attributes used for the cut part of the 3D elements in the Section/Elevation window. Compatibility: up to ARCHICAD 19 the
PROJECT2{3} command is affected too. Inline fill and line_type attributes (defined in master script or 3d script) are not accepted.
fill: fill name or index number.
fill_background_pen: fill background pencolor number.
fill_pen: fill pencolor number.
contour_pen: fill contour pencolor number.
line_type: line type of polygon edges.

SECT_ATTRS{2}
SECT_ATTRS{2} contour_pen [, line_type]
Compatibility: introduced in ARCHICAD 21.
Defines the contour pen and line type used for the cut part of the 3D elements in Section/Elevation. Can be combined with
BUILDING_MATERIAL statement for handling all of the Section/Elevation attributes. Inline line_type attribute (defined in master script
or 3d script) is not accepted.
contour_pen: fill contour pencolor number.
line_type: line type of polygon edges.

SHADOW
SHADOW casting [, catching]

Attributes

GDL Reference Guide 232

Controls the shadow casting of the elements in PhotoRendering and in vectorial shadow casting.
casting: ON, AUTO or OFF
ON: all the subsequent elements will cast shadows in all circumstances,
OFF: none of the subsequent elements will cast shadows in any circumstance,
AUTO: shadow casting will be determined automatically
Setting SHADOW OFF for hidden parts will spare memory space and processing time.
Setting SHADOW ON ensures that even tiny details will cast shadows.

catching: ON or OFF
This optional parameter controls the appearance of shadows (from other bodies) on surfaces.

If shadow casting isn't specified, the default will be AUTO.

Example:

SHADOW OFF
! horizontal surface
PRISM 4, 0.2,
 0, 0,
 6, 0,
 6, 6,
 0, 6

ADDX 0.5
ADDY 2.5

BRICK 1, 1, 1
ADDX 2
SHADOW ON
BRICK 1, 1, 2
ADDX 2
SHADOW OFF
BRICK 1, 1, 3

DEL 4

Attributes

GDL Reference Guide 233

Directives Used in 2D Scripts Only
DRAWINDEX
DRAWINDEX number
Defines the drawing order of 2D Script elements. Elements with a smaller drawindex will be drawn first.
Restriction of parameters:
0 < number <= 50

(In the current version of GDL only the 10, 20, 30, 40 and 50 DRAWINDEX values are valid. Other values will be rounded to these.)
If no DRAWINDEX directive is present, the default drawing order is the following:
1 Figures
2 Fills
3 Lines
4 Text elements

[SET] FILL
[SET] FILL name_string
[SET] FILL index
All the 2D polygons generated afterwards will represent that fill until the next SET FILL statement.
The index is a constant referring to a fill stack in the internal data structure. This stack is modified during GDL analysis and can also be modified
from within the program. The use of the index instead of the fill name is only recommended with the prior use of the IND function.
Default:
SET FILL 0
i.e., empty fill, if there is no SET FILL statement in the script.

[SET] LINE_TYPE
[SET] LINE_TYPE name_string
[SET] LINE_TYPE index
All the 2D lines generated afterwards will represent that line type (in lines, arcs, polylines) until the next SET LINE_TYPE statement. The
index is a constant that refers to a line type stack in the internal data structure. This stack is modified during GDL analysis and can also be
modified from the program. The use of the index instead of the line type name is only recommended with the prior use of the IND function.
Default:
SET LINE_TYPE 1

Attributes

GDL Reference Guide 234

i.e., solid line, if there is no SET LINE_TYPE statement in the script.

INLINE ATTRIBUTE DEFINITION
Attributes in can be created using the material, fill and line type dialog boxes. These floor plan attributes can be referenced from any GDL
script. Attributes can also be defined in GDL scripts. There are two different cases:
• Attribute definition in the MASTER_GDL script. The MASTER_GDL script is interpreted when the library that contains it is loaded in the

memory. The MASTER_GDL attributes are merged into the floor plan attributes; attributes with the same names are not replaced. Once
the MASTER_GDL is loaded, the attributes defined in it can be referenced from any script.

• Attribute definition in library parts. The materials and textures defined this way can be used in the script and its second generation scripts.
Fills and line types defined and used in the master or 2D script have the same behavior as if they were defined in the MASTER_GDL script,
but only if used by name or index (not through a parameter). Fills and line types defined in the master or 3D script can't be accessed in
the 3D script.

The Check GDL Script command in the script window helps to verify whether the material, fill, line type or style parameters are correct.
When a material, fill, line type or style is different in the 3D interpretation of the library part from the intended one, but there is no error
message, this probably means that one or more of the parameter values are incorrect. The Check GDL Scripts command will help you with
detailed messages to find these parameters.

Materials
DEFINE MATERIAL
DEFINE MATERIAL name type,
 surface_red, surface_green, surface_blue
 [, ambient_ce, diffuse_ce, specular_ce, transparent_ce,
 shining, transparency_attenuation
 [, specular_red, specular_green, specular_blue,
 emission_red, emission_green, emission_blue, emission_att]]
 [, fill_index [, fillcolor_index, texture_index]]

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.
Any GDL script can include material definitions prior to the first reference to that material name. This material can only be used for 3D
elements in its own script and its second generation scripts.
name: name of the material.

Attributes

GDL Reference Guide 235

type: type of the material. The actual number (n) of parameters that define the material is different, depending on the type. The meaning
of the parameters and their limits are explained in the examples’ comments.
0: general definition, n=16,
1: simple definition, n=9 (extra parameters are constants or calculated from given values),
2-7: predefined material types, n=3. The three values are the RGB components of the surface color. Other parameters are constants
or calculated from the color.
2: matte,
3: metal,
4: plastic,
5: glass,
6: glowing,
7: constant,
10: general definition with fill parameter, n=17,
11: simple definition with fill parameter, n=10,
12-17: predefined material types with fill parameter, n=4,
20: general definition with fill, color index of fill and index of texture parameters, n=19,
21: simple definition with fill, color index of fill and index of texture parameters, n=12,
22-27: predefined material types with fill, color index of fill and index of texture parameters, n=6.
20-27: Special meanings for types 20-27: If the pen number is zero, vectorial hatches will be generated with the active pen. Zero value
for a texture or fill index allows you to define materials without a vectorial hatch or texture.

Example 1: Materials with solid colors
DEFINE MATERIAL "water" 0,
 0.5284, 0.5989, 0.6167,! surface RGB [0.0..1.0]
 1.0, ! ambient coefficient [0.0..1.0]
 0.5, ! diffuse coefficient [0.0..1.0]
 0.5, ! specular coeff. [0.0..1.0]
 0.9, ! transparent coeff. [0.0..1.0]
 2.0, ! shining [0.0..100.0]
 1, ! transparency atten. [0.0..4.0]
 0.5284, 0.5989, 0.6167,! specular RGB [0.0..1.0]
 0, 0, 0, ! emission RGB [0.0..1.0]
 0.0 ! emission atten. [0.0..65.5]

Attributes

GDL Reference Guide 236

DEFINE MATERIAL "asphalt" 1,
 0.1995, 0.2023, 0.2418,! surface RGB [0.0..1.0]
 1.0, 1.0, 0.0, 0.0,
 ! ambient, diffuse, specular, transparent
 ! coefficients [0.0..1.0]
 0, ! shining [0..100]
 0 ! transparency attenuation [0..4]
DEFINE MATERIAL "matte red" 2,
 1.0, 0.0, 0.0 ! surface RGB [0.0..1.0]

Example 2: Material with fill
DEFINE MATERIAL "Brick-Red" 10,
 0.878294, 0.398199, 0.109468,
 0.58, 0.85, 0.0, 0.0,
 0,
 0.0,
 0.878401, 0.513481, 0.412253,
 0.0, 0.0, 0.0,
 0,
 IND(FILL, "common brick") ! fill index

Example 3: Material with fill and texture
DEFINE MATERIAL "Yellow Brick+*" 20,
 1, 1, 0, ! surface RGB [0.0 .. 1.0]
 0.58, 0.85, 0, 0,
 ! ambient, diffuse, specular, transparent
 ! coefficients [0.0 .. 1.0]
 0, ! shining [0.0 .. 100.0]
 0, ! transparency attenuation [0.0 .. 4.0]
 0.878401, 0.513481, 0.412253, ! specular RGB [0.0 .. 1.0]
 0, 0, 0, ! emission RGB [0.0 .. 1.0]
 0, ! emission attenuation [0.0 .. 65.5]
 IND(FILL, "common brick"), 61,
 IND(TEXTURE, "Brick")
 ! Fill index, color index, texture index

DEFINE MATERIAL BASED_ON
DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]

Attributes

GDL Reference Guide 237

Material definition based on an existing material. Specified parameters of the original material will be overwritten by the new values, other
parameters remain untouched. Using the command without actual parameters results in a material exactly the same as the original, but with a
different name. Parameter values of a material can be obtained using the REQUEST{2} ("Material_info", ...) function.
orig_name: name of the original material (name of an existing, previously defined GDL or floor plan material).
namei: material parameter name to be overwritten by a new value. Names corresponding to parameters of material definition:
gs_mat_surface_r, gs_mat_surface_g, gs_mat_surface_b: (surface RGB [0.0..1.0])
gs_mat_ambient: (ambient coefficient [0.0..1.0])
gs_mat_diffuse: (diffuse coefficient [0.0..1.0])
gs_mat_specular: (specular coefficient [0.0..1.0])
gs_mat_transparent: (transparent coefficient [0.0..1.0])
gs_mat_shining: (shininess [0.0..100.0])
gs_mat_transp_att: (transparency attenuation [0.0..4.0])
gs_mat_specular_r, gs_mat_specular_g, gs_mat_specular_b: (specular color RGB [0.0..1.0])
gs_mat_emission_r, gs_mat_emission_g, gs_mat_emission_b: (emission color RGB [0.0..1.0])
gs_mat_emission_att: (emission attenuation [0.0..65.5])
gs_mat_fill_ind: (fill index)
gs_mat_fillcolor_ind: (fill color index)
gs_mat_texture_ind: (texture index)

expri: new value to overwrite the specified parameter of the material. Value ranges are the same as at the material definition.

Example:
n = REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_emission_rgb",
 em_r, em_g, em_b)
em_r = em_r + (1 - em_r) / 3
em_g = em_g + (1 - em_g) / 3
em_b = em_b + (1 - em_b) / 3
DEFINE MATERIAL "Brick-Face light" [,] BASED_ON "Brick-Face" \
 PARAMETERS gs_mat_emission_r = em_r,
 gs_mat_emission_g = em_g, gs_mat_emission_b = em_b
SET MATERIAL "Brick-Face"
BRICK a, b, zzyzx
ADDX a
SET MATERIAL "Brick-Face light"
BRICK a, b, zzyzx

Attributes

GDL Reference Guide 238

DEFINE TEXTURE
DEFINE TEXTURE name expression, x, y, mask, angle
Any GDL script can include texture definition prior to the first reference to that texture name. The texture can be used only in the script in
which it was defined and its subsequent second generation scripts.
name: name of the texture.
expression: picture associated with the texture. A string expression means a file name, a numerical expression an index of a picture

stored in the library part. A 0 index is a special value which refers to the preview picture of the library part.
x: logical width of the texture.
y: logical height of the texture.
mask:
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
Alpha channel controls (j1... j6):
j1: alpha channel changes the transparency of texture,
j2: Bump mapping or surface normal perturbation. Bump mapping uses the alpha channel to determine the amplitude of the surface
normal,
j3: alpha channel changes the diffuse color of texture,
j4: alpha channel changes the specular color of texture,
j5: alpha channel changes the ambient color of texture,
j6: alpha channel changes the surface color of texture,
Connection controls (j7... j9): (If the value is zero, normal mode is selected.)

x

y

j7: the texture will be shifted randomly,

Attributes

GDL Reference Guide 239

x

y

j8: mirroring in x direction,

x

y

j9: mirroring in y direction.

x

y

angle: angle of the rotation.

Example:
DEFINE TEXTURE "Brick" "Brick.PICT", 1.35, 0.3, 256+128, 35.0

Attributes

GDL Reference Guide 240

Fills
DEFINE FILL
DEFINE FILL name [[,] FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing, angle, n,
 frequency1, direction1, offset_x1, offset_y1, m1,
 length11, ..., length1m,
 ...
 frequencyn, directionn, offset_xn,
 lengthn1, ..., lengthnm

Note 1: This command can contain additional data definition.
See the section called “Additional Data” for details.
Any GDL script may include fill definitions prior to the first reference to that fill name. The fill defined this way can be used only for 2D
elements in the script in which it was defined and its subsequent second generation-scripts.

frequency
i frequency

i

offset_y
i

offset_x
i

length
i1

length
i2

length
im...

m line parts

direction
i

X

Y

name: name of the fill.
fill_types:
fill_types = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: cut fills,

Attributes

GDL Reference Guide 241

j2: cover fills,
j3: drafting fills.

If the j bit is set, the defined fill can be used corresponding to its specified type. Default is all fills (0).
pattern definition: pattern1, pattern2, pattern3, pattern4, pattern5, pattern6, pattern7,
pattern8: 8 numbers between 0 and 255 representing binary values. Defines the bitmap pattern of the fill.

y

x

spacing*y

spacing*x

angle

spacing: hatch spacing - defines a global scaling factor for the whole fill. All values will be multiplied by this number in both the x and
y direction.

angle: global rotation angle in degrees.
n: number of hatch lines.
frequencyi: frequency of the line (the distance between two lines is spacing * frequencyi).
diri: direction angle of the line in degrees.
offset_xi, offset_yi: offset of the line from the origin.
mi: number of line parts.
lengthij: length of the line parts (the real length is spacing * lengthij). Line parts are segments and spaces following each other. First

line part is a segment, zero length means a dot.

Attributes

GDL Reference Guide 242

The bitmap pattern is only defined by the pattern1... pattern8 parameters and is used when the display options for Polygon Fills are set to
"Bitmap Pattern". To define it, choose the smallest unit of the fill, and represent it as dots and empty spaces using a rectangular grid with 8x8
locations. The 8 pattern parameters are decimal representations of the binary values in the lines of the grid (a dot is 1, an empty space is 0).
The vectorial hatch is defined by the second part of the fill definition as a collection of dashed lines repeated with a given frequency (frequencyi).
Each line of the collection is described by its direction (directioni), its offset from the origin (offset_xi, offset_yi) and the dashed line definition
which contains segments and spaces with the given length (lengthij) following each other.

Note 2: Only simple fills can be defined with the DEFINE FILL command. There is no possibility to define symbol fills with this command.

Example:
DEFINE FILL "brick" 85, 255, 136, 255,
 34, 255, 136, 255,
 0.08333, 0.0, 4,
 1.0, 0.0, 0.0, 0.0, 0,
 3.0, 90.0, 0.0, 0.0, 2,
 1.0, 1.0,
 3.0, 90.0, 1.5, 1.0, 4,
 1.0, 3.0, 1.0, 1.0,
 1.5, 90.0, 0.75, 3.0, 2,
 1.0, 5.0
Bitmap pattern:
Pattern: Binary value:
pattern1 = 85 01010101 • • • •
pattern2 = 255 11111111 ••••••••
pattern3 = 136 10001000 • •
pattern4 = 255 11111111 ••••••••
pattern5 = 34 00100010 • •
pattern6 = 255 11111111 ••••••••
pattern7 = 136 10001000 • •
pattern8 = 255 11111111 ••••••••

Attributes

GDL Reference Guide 243

View: Vectorial hatch:

DEFINE FILLA
DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing_x, spacing_y, angle, n,
 frequency1, directional_offset1, direction1,
 offset_x1, offset_y1, m1,
 length11, ..., length1m,
 ...
 frequencyn, directional_offsetn, directionn,
 offset_xn, offset_yn, mn,
 lengthn1, ..., lengthnm

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

Attributes

GDL Reference Guide 244

X

Y

directional_offseti

directional_offseti

lengthi1

lengthi2

lengthim...

frequency
i frequency

i

offset_yi

offset_xi

directioni

m line parts

An extended DEFINE FILL statement.

xspacingx*x

spacingy*y

y

angle

spacing_x, spacing_y: spacing factor in the x and y direction, respectively. These two parameters define a global scaling factor for
the whole fill. All values in the x direction will be multiplied by spacing_x and all values in the y direction will be multiplied by spacing_y.

Attributes

GDL Reference Guide 245

directional_offseti: the offset of the beginning of the next similar hatch line, measured along the line’s direction. Each line of
the series will be drawn at a distance defined by frequencyi with an offset defined by directional_offseti. The real length of the offset will
be modulated by the defined spacing.

Example:
DEFINE FILLA "TEST" 8, 142, 128, 232,
 8, 142, 128, 232,
 0.5, 0.5, 0, 2,
 2, 1, 90, 0,
 0, 2, 1, 1,
 1, 2, 0, 0, 0,
 2, 1, 3
FILL "TEST"
POLY2 4, 6,
 -0.5, -0.5, 12, -0.5,
 12, 6, -0.5, 6
Bitmap pattern:
Pattern: Binary value:
pat1 = 8 00001000 •
pat2 = 142 10001110 • •••
pat3 = 128 10000000 •
pat4 = 232 11101000 ••• •
pat5 = 8 00001000 •
pat6 = 142 10001110 • •••
pat7 = 128 10000000 •
pat8 = 232 11101000 ••• •

View: Vectorial hatch:

Attributes

GDL Reference Guide 246

DEFINE SYMBOL_FILL
DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 spacingx1, spacingy1, spacingx2, spacingy2,
 angle, scaling1, scaling2, macro_name [,] PARAMETERS [name1
 = value1, ..., namen = valuen]

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

spacing x2

spacing x1

spacing
y2

spacing
y1

library p
art symbol

angle

An extended DEFINE FILL statement, which allows you to include a library part drawing in a fill definition. The usage of macro_name and
the parameters are the same as for the CALL command.
spacingx1, spacingx2: horizontal spacings.
spacingy1, spacingy2: vertical spacings.

Attributes

GDL Reference Guide 247

scaling1: horizontal scale.
scaling2: vertical scale.
macro_name: the name of the library part.

DEFINE SOLID_FILL
DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]
Defines a solid fill.

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

DEFINE EMPTY_FILL
DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]
Defines an empty fill.

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.

DEFINE LINEAR_GRADIENT_FILL
DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
Define linear gradient fill.

DEFINE RADIAL_GRADIENT_FILL
DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
Define radial gradient fill.

DEFINE TRANSLUCENT_FILL
DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage
Define a fill, which shows the background and foreground colors in mixture defined by the given percentage value.
percentage: percentage of foreground color opacity; 0 displays background color only (like empty fill), 100 displays the foreground

color only (like solid fill).

Attributes

GDL Reference Guide 248

DEFINE IMAGE_FILL
DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle
Define a fill based on an image pattern.
image_name: name of the pattern image loaded in the current library.
image_vert_size, image_hor_size: model size of the pattern.
image_mask: tiling directive
image_mask = 1024*j11 + 2048*j12, where each j can be 0 or 1.
For more information about laying out images on a surface see the DEFINE TEXTURE command.
j11: mirroring in x direction
j12: mirroring in y direction

image_rotangle: rotation angle of the pattern from the normal coordinate system.

Line Types
DEFINE LINE_TYPE
DEFINE LINE_TYPE name spacing, n,
 length1, ..., lengthn

Note 1: This command can contain additional data definition.
See the section called “Additional Data” for details.
Any GDL script may include line type definitions prior to the first reference to that line-type name. The line type defined this way can be used
only for 2D elements in the script in which it was defined and its subsequent second generation scripts.
name: name of the line type.
spacing: spacing factor.
n: number of the line parts.
lengthi: length of the line parts (the real length is spacing * lengthi). Line parts consist of segments and spaces. First line part is a segment,

zero length means a dot.

Note 2: Only simple line types - i.e. consisting only of segments and spaces - can be defined with this command, defining symbol line types
can be done with the DEFINE SYMBOL_LINE command.

Attributes

GDL Reference Guide 249

Example:
DEFINE LINE_TYPE "line - - ." 1,
 6, 0.005, 0.002, 0.001, 0.002, 0.0, 0.002

DEFINE SYMBOL_LINE
DEFINE SYMBOL_LINE name dash, gap, macro_name PARAMETERS [name1 = value1,
 ...
 namen = valuen]

Note: This command can contain additional data definition.
See the section called “Additional Data” for details.
An extended DEFINE LINE statement, which allows you to include a library part drawing in a line definition. The usage of macro_name and
the parameters are the same as for the CALL command.
dash: scale of both line components.
gap: gap between each component.

Text Styles and Text Blocks
DEFINE STYLE
DEFINE STYLE name font_family, size, anchor, face_code
Recommended to be used with the TEXT2 and TEXT commands.
GDL scripts may include style definitions prior to the first reference to that style name. The style defined this way can be used only in the script
in which it was defined and its subsequent second generation scripts.
name: name of the style.
font_family: name of the used font family (e.g., Garamond).
size: height of the "l" character in millimeters in paper space or meters in model space.
If the defined style is used with the TEXT2 and TEXT commands, size means character heights in millimeters.
If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size meaning millimeters or meters depends on the
fixed_height parameter of the TEXTBLOCK definition, while the outline and shadow face_code values and the anchor values are not effective.
anchor: code of the position point in the text.

Attributes

GDL Reference Guide 250

1 2 3

4 5 6

7 8 9

face_code: a combination of the following values:
face_code = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: bold,
j2: italic,
j3: underline,
If face_code = 0, then style is normal.

DEFINE STYLE{2}
DEFINE STYLE{2} name font_family, size, face_code
New version of style definition, recommended to be used with PARAGRAPH definitions.
name: name of the style.
font_family: name of the used font family (e.g., Garamond).
size: height of the characters in mm or m in model space.
face_code: a combination of the following values:
face_code = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1: bold,
j2: italic,
j3: underline,
j6: superscript,
j7: subscript,
j8: strikethrough.
If face_code = 0, then style is normal.

Attributes

GDL Reference Guide 251

If the defined style is used with the TEXT2 command, size means character heights in millimeters, while the superscript, subscript and
strikethrough face_code values are not effective. If used with PARAGRAPH strings in the RICHTEXT2 and RICHTEXT commands, size
meaning millimeters or meters depends on the fixed_height parameter of the TEXTBLOCK definition.

PARAGRAPH
PARAGRAPH name alignment, firstline_indent,
 left_indent, right_indent, line_spacing [,
 tab_position1, ...]
 [PEN index]
 [[SET] STYLE style1]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 [PEN index]
 [[SET] STYLE style2]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 ...
ENDPARAGRAPH
GDL scripts may include paragraph definitions prior to the first reference to that paragraph name. The paragraph defined this way can be used
only in the script in which it was defined and its subsequent second generation scripts. A paragraph is defined to be a sequence of an arbitrary
number of strings (max 256 characters long each) with different attributes: style, pen and material (3D). If no attributes are specified inside
the paragraph definition, actual (or default) attributes are used. The new lines included in a paragraph string (using the special character '\n')
will automatically split the string into identical paragraphs, each containing one line. Paragraph definitions can be referenced by name in the
TEXTBLOCK command. All length type parameters (firstline_indent, left_indent, right_indent, tab_position) meaning millimeters or meters
depends on the fixed_height parameter of the TEXTBLOCK definition.
name: name of the paragraph. Can be either string or integer. Integer identifiers works only with the TEXTBLOCK_ command
alignment: alignment of the paragraph strings. Possible values:
1: left aligned,
2: center aligned,

Attributes

GDL Reference Guide 252

3: right aligned,
4: full justified.

firstline_indent: first line indentation, in mm or m in model space.
left_indent: left indentation, in mm or m in model space.
right_indent: right indentation, in mm or m in model space.
line_spacing: line spacing factor. The default distance between the lines (character size + distance to the next line) defined by the

actual style will be multiplied by this number.
tab_positioni: consecutive tabulator positions (each relative to the beginning of the paragraph), in mm or m in model space. Tabulators

in the paragraph strings will snap to these positions. If no tabulator positions are specified, default values are used (12.7 mm). Works only
with '\t' special character.

stringi: part of the text. Can be either constant string or string type parameter.

TEXTBLOCK
TEXTBLOCK name width, anchor, angle, width_factor, charspace_factor, fixed_height,
 'string_expr1' [, 'string_expr2', ...]
Textblock definition. GDL scripts may include textblock definitions prior to the first reference to that textblock name. The textblock defined this
way can be used only in the script in which it was defined and its subsequent second generation scripts. A textblock is defined to be a sequence
of an arbitrary number of strings or paragraphs which can be placed using the RICHTEXT2 command and the RICHTEXT command. Use
the REQUEST ("TEXTBLOCK_INFO", ...) function to obtain information on the calculated width and height of a textblock.
name: name of the textblock, string type value.
width: textblock width in mm or m in model space, if 0 it is calculated automatically.
anchor: code of the position point in the text.

Attributes

GDL Reference Guide 253

1 2 3

4 5 6

7 8 9

angle: rotation angle of the textblock in degrees.
width_factor: Character widths defined by the actual style will be multiplied by this number.
charspace_factor: The horizontal distance between two characters will be multiplied by this number.
fixed_height: Possible values:
1: the placed TEXTBLOCK will be scale-independent and all specified length type parameters will mean millimeters,
0: the placed TEXTBLOCK will be scale-dependent and all specified length type parameters will mean meters in model space.

string_expri: means paragraph name if it was previously defined, simple string otherwise (with default paragraph parameters).

TEXTBLOCK_
TEXTBLOCK_ name width, anchor, angle, width_factor, charspace_factor, fixed_height, n,
 'expr_1' [, 'expr_2', ..., 'expr_n']
Similar to the TEXTBLOCK command. The meaning of all the parameters are the same, with the following additions:
expr_i: paragraph names can be either string or integer types within one textblock.
n: number of listed expr_i names

Additional Data
Attribute definitions can contain optional additional data definitions after the ADDITIONAL_DATA keyword. The additional data must be
entered after the previously defined parameters of the attribute command. An additional data has a name (namei) and a value (valuei), which
can be an expression of any type, even an array. If a string parameter name ends with the substring "_file", its value is considered to be a file
name and will be included in the archive project. Different meanings of additional data can be defined and used by the executing application.
Additional data definition is available in the following commands:

Attributes

GDL Reference Guide 254

DEFINE MATERIAL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]
DEFINE FILL parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE FILLA parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SYMBOL_FILL parameters
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE LINE_TYPE parameters [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]
DEFINE SYMBOL_LINE parameters
 [[,] ADDITIONAL_DATA name1 = value1, name2 = value2, ...]

EXTERNAL FILE DEPENDENCE

FILE_DEPENDENCE
FILE_DEPENDENCE "name1" [, "name2", ...]
You can give a list of external files on which your GDL script depends on. File names should be constant strings.
All files specified here will be included in the archive project (like constant macro names used in CALL statements and constant picture names
used in various GDL commands). The command works on this level only: if the specified files are library parts, their called macro files will
not be included.
The command can be useful in cases when external files are referenced at custom places in the GDL script, for example: ADDITIONAL_DATA
file parameters, data files in file operations.

Non-Geometric Scripts

GDL Reference Guide 255

NON-GEOMETRIC SCRIPTS
In addition to the 3D and 2D script windows that define the appearance of the GDL Object, further scripts are available for adding
complementary information to it. These are the Properties Script used for quantity calculations, the Parameter Script that includes the list of
possible values for different parameters, and the User Interface Script for creating a custom interface for parameter entry, Forward Migration
Script and Backward Migration Scripts to define how to migrate an old instance forward to the actual element or how to migrate the element
backward to an older one. The commands available for all these script types are detailed on the following pages.

THE PROPERTIES SCRIPT
Library parts have a GDL window reserved for the Properties script. This script allows you to make library part properties dependent on
parameters, and, through a directive, define their place in the final component list. By using a few commands, it is possible to define in the
script local descriptors and components. Descriptors and components from external databases can also be referenced. Code lengths cannot
exceed 32 characters.
In the Properties script, you can use any GDL command that does not generate a shape.

DATABASE_SET
DATABASE_SET set_name [, descriptor_name, component_name, unit_name, key_name,
 criteria_name, list_set_name]
Database set definition or Database set selection. If this command is placed in a MASTER_GDL script, it will define a Database set containing
Descriptor, Component, Unit, Key, Criteria and List Scheme files.
This Database set name can then be referenced from Properties Scripts using the same command with only the set_name parameter as a
directive, by selecting the actual Database set that REF COMPONENTs and REF DESCRIPTORs refer to. The default Database set name
is "Default Set", and will be used if no other set has been selected. The default Database set file names are: DESCDATA, COMPDATA,
COMPUNIT, LISTKEY, LISTCRIT, LISTSET. All these names get translated in localized ARCHICAD versions.
Scripts can include any number of DATABASE_SET selections.
set_name: database set name.
descriptor_name: descriptor data file name.
component_name: component data file name.
unit_name: unit data file name.
key_name: key data file name.

Non-Geometric Scripts

GDL Reference Guide 256

criteria_name: criteria file name.
list_set_name: list Scheme file name.

DESCRIPTOR
DESCRIPTOR name [, code, keycode]
Local descriptor definition. Scripts can include any number of DESCRIPTORs.
name: can extend to more than one line. New lines can be defined by the character '\n' and tabulators by '\t'. Adding '\' to the end of a line

allows you to continue the string in the next line without adding a new line. Inside the string, if the '\' character is doubled (\\), it will lose
its control function and simply mean '\'. The length of the string (including the new line characters) cannot exceed 255 characters: additional
characters will be simply cut by the compiler. If you need a longer text, use several DESCRIPTORs.

code: string, defines a code for the descriptor.
keycode: string, reference to a key in an external database.
The key will be assigned to the descriptor.

REF DESCRIPTOR
REF DESCRIPTOR code [, keycode]
Reference by code and keycode string to a descriptor in an external database.

COMPONENT
COMPONENT name, quantity, unit [, proportional_with, code, keycode, unitcode]
Local component definition. Scripts can include any number of COMPONENTs.
name: the name of the component (max. 128 characters).
quantity: a numeric expression.
unit: the string used for unit description.
proportional_with: a code between 1 and 6. When listing, the component quantity defined above will be automatically multiplied

by a value calculated for the current listed element:
1: item,
2: length,
3: surface A,
4: surface B,
5: surface,

Non-Geometric Scripts

GDL Reference Guide 257

6: volume.
code: string, defines a code for the component.
keycode: string, reference to a key in an external database. The key will be assigned to the component.
unitcode: string, reference to a unit in an external database that controls the output format of the component quantity. This will replace

the locally defined unit string.

REF COMPONENT
REF COMPONENT code [, keycode [, numeric_expression]]
Reference by code and keycode string to a component in an external database. The value to multiply by in the component database can be
overwritten by the optional numeric expression specified here.

BINARYPROP
BINARYPROP
Binaryprop is a reference to the binary properties data (components and descriptors) defined in the library part in the Components and
Descriptors sections.
DATABASE_SET directives have no effect on the binary data.

SURFACE3D
SURFACE3D ()
The Surface 3D () function gives you the surface of the 3D shape of the library part.
Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all shapes’
surfaces.

VOLUME3D
VOLUME3D ()
The Volume 3D () function gives you the volume of the 3D shape of the library part.
Warning: If you place two or more shapes in the same location with the same parameters, this function will give you the total sum of all shapes’
volumes.

POSITION
POSITION position_keyword
Effective only in the Component List.

Non-Geometric Scripts

GDL Reference Guide 258

Changes only the type of the element the following descriptors and components are associated to. If there are no such directives in the Properties
script, descriptors and components will be listed with their default element types.
position_keyword: keywords are the following:
WALLS
COLUMNS
BEAMS
DOORS
WINDOWS
OBJECTS
CEILS
PITCHED_ROOFS
LIGHTS
HATCHES
ROOMS
MESHES

A directive remains valid for all succeeding DESCRIPTORs and COMPONENTs until the next directive is ascribed. A script can include any
number of directives.

Example:
DESCRIPTOR "\tPainted box.\n\t Properties:\n\
\t\t - swinging doors\n\
\t\t - adjustable height\n\
\t\t - scratchproof"
REF DESCRIPTOR "0001"
s = SURFACE3D () !wardrobe surface
COMPONENT "glue", 1.5, "kg"
COMPONENT "handle", 2*c, "nb" !c number of doors
COMPONENT "paint", 0.5*s, "kg"
POSITION WALLS
REF COMPONENT "0002"

DRAWING
DRAWING
DRAWING: Refers to the drawing described in the 2D script of the same library part. Use it to place drawings in your bill of materials.

Non-Geometric Scripts

GDL Reference Guide 259

THE PARAMETER SCRIPT
Parameter lists are sets of possible numerical or string values. They can be applied to the parameters as defined in the Parameter Script of the
Library Part, in the ARCHICAD_LibraryMaster object or the MASTER_GDL script. Type compatibility is verified by the GDL compiler.
The Parameter Script will be interpreted each time a value list type parameter value is to be changed, and the possible values defined in the script
will appear in a pop-up menu. For numerical parameters pop-up menu item values can be defined as strings using the VALUES{2} command.

VALUES
VALUES "parameter_name" [,]value_definition1 [, value_definition2, ...]
VALUES "fill_parameter_name" [[,] FILLTYPES_MASK fill_types], value_definition1
 [, value_definition2, ...]
VALUES "profile_parameter_name" [[,] PROFILETYPES_MASK profile_types], value_definition1
 [, value_definition2, ...]
Defines a value restriction for a parameter (except dictionary types). The command has a special syntax for fill type and profile type parameters.
If used on an array parameter, the restriction will be applied to all items individually.
parameter_name: name of an existing parameter
fill_parameter_name: name of an existing fillpattern type parameter
fill_types:
fill_types = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: cut fills,
j2: cover fills,
j3: drafting fills.

Can be used for fill-pattern type parameters only. The fill popup for this parameter will contain only those types of fills which are specified
by the bits set to 1. Default is all fills (0).
profile_parameter_name: name of an existing profile type parameter
profile_types:
profile_types = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5, where each j can be 0 or 1.
j1: wall,
j2: beam,
j3: column,
j4: handrail,
j5: other.

Non-Geometric Scripts

GDL Reference Guide 260

Can be set for profile type parameters only. The value list for any profile type parameter includes all existing profiles of the planfile automatically,
no individual VALUES definition is needed. Using VALUES without masking (0) has the exact same result. Using VALUES with masking
can filter the value list, leaving only the corresponding profiles of the bits set to 1. Individual profile indexes can be listed as regular value
definitions as well.
value_definitioni: value definition, can be:
expression: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered, or
RANGE: range definition, with optional step
RANGE left_delimiter[lower_limit], [upper_limit]right_delimiter [STEP step_start_value,
step_value]

left_delimiter: [, meaning >=, or (, meaning >; lower_limit: lower limit expression; upper_limit: upper limit expression; right_delimiter:],
meaning <=, or), meaning <; step_start_value: starting value; step_value: step value.

VALUES{2}
VALUES{2} "parameter_name" [,]num_expression1, description1,
 [, num_expression2, description2, ...]
VALUES{2} "parameter_name" [,]num_values_array1, descriptions_array1
 [, num_values_array2, descriptions_array2, ...]
parameter_name: name of an existing angle, length, real, or integer type parameter
num_expressioni, num_values_arrayi: simple value definition for a numerical parameter, or array expression containing

multiple numerical values. Available only for VALUES{2}
descriptioni, descriptions_arrayi: description string of the numerical value i, or array expression containing multiple

description strings of the values defined by num_values_arrayi (array dimensions must match). Available only for VALUES{2}

Example 1: Simple value lists
VALUES "par1" 1, 2, 3
VALUES "par2" "a", "b"
VALUES "par3" 1, CUSTOM, SIN (30)
VALUES "par4" 4, RANGE(5, 10], 12, RANGE(,20] STEP 14.5, 0.5, CUSTOM

Non-Geometric Scripts

GDL Reference Guide 261

Example 2: Read all string values from a file for use in a value list
DIM sarray[]
! file in the library, containing parameter data
filename = "ProjectNotes.txt"
ch1 = OPEN ("text", filename, "MODE=RO, LIBRARY")
i = 1
j = 1
sarray[1] = ""
! collect all strings
DO
 n = INPUT (ch1, i, 1, var)
 IF n > 0 AND VARTYPE (var) = 2 THEN
 sarray[j] = var
 j = j + 1
 ENDIF
 i = i + 1
WHILE n > 0
CLOSE ch1
! parameter popup with strings read from the file
VALUES "RefNote" sarray

PARAMETERS
PARAMETERS name1 = expression1 [,
 name2 = expression2, ...,
 namen = expressionn]
namei: the name of the parameter.
expressioni: the new value of the parameter.
Using this command, the parameter values of a Library Part can be modified by the Parameter Script.
The modification will only be effective for the next interpretation. Commands in macros refer to the caller’s parameters. If the parameter is a
value list, the value chosen will be either an existing value, the custom value, or the first value from the value list.
In addition, the global string variable GLOB_MODPAR_NAME contains the name of the last user-modified parameter.

LOCK
LOCK "name1" [, "name2", ..., "namen"]
Locks the named parameter(s) in the settings dialog box. A locked parameter will appear grayed in the dialog box and its value cannot be
modified by the user.

Non-Geometric Scripts

GDL Reference Guide 262

namen: string expression, name of the parameter to be locked.
Compatibility: starting from ARCHICAD 22, the locking/hiding of selected ARCHICAD interface controls is extended.
The extended feature can be activated with "Enable hide/lock of specific fix named optional parameters" setting (see "Details/Compatibility
Options" dialog of the object in the Library Part Editor). The extended selection contains fix named optional parameters corresponding to:
• standard text handling controls of "Text Style" settings dialog panel - see the section called “Parameters for Text Handling”,
• extended label styling controls of "Text Style" settings dialog panel in Label tool - see the section called “Parameters for Labels”,
• and selected label pointer controls of "Pointer" settings dialog panel - see the section called “Parameters for Labels”.
LOCK ALL ["name1" [, "name2", ..., "namen"]]
Locks all parameters in the settings dialog box, except those listed after the ALL keyword.

HIDEPARAMETER
HIDEPARAMETER "name1" [, "name2", ..., "namen"]
Hides the named parameter(s) and its child parameters in the settings dialog box. A parameter hidden using this command in the parameter
script will automatically disappear from the parameter list.
namen: string expression, name of the parameter to be hidden.
Compatibility: starting from ARCHICAD 22, the locking/hiding of selected ARCHICAD interface controls is extended. For details, see the LOCK command.
HIDEPARAMETER ALL ["name1" [, "name2", ..., "namen"]]
Hides all parameters and its child parameters in the settings dialog box, except those (and their children) listed after the ALL keyword.

THE USER INTERFACE SCRIPT
Using the following GDL commands, you can define a custom interface for a Library Part’s Custom Settings panel in the settings dialog box.
If you click the Set as default button in the Library Part editor, the custom interface will be used by default in the Object’s (Door’s, Window’s,
etc.) settings dialog box. Parameters with custom control are not hidden automatically on the original parameter list, but they can be hidden
manually in the library part editor.

Non-Geometric Scripts

GDL Reference Guide 263

The origin of the coordinate system is in the top-left corner. Sizes and coordinate values are measured in pixels.

UI_DIALOG
UI_DIALOG title [, size_x, size_y]
Defines the title of the dialog box. The default title is 'Custom Settings'. Currently, the size of the available area is fixed at 444 x 296 pixels,
and the size_x and size_y parameters are not used.
Restriction: The Interface Script should contain only one UI_DIALOG command.

UI_PAGE
UI_PAGE page_number [, parent_id, page_title [, image]]
Page directive, defines the page that the interface elements are placed on. Default page numbering starts at 1, but any starting number is usable.
If there is no UI_PAGE command in the Interface Script, each element will be displayed on the first page by default. Moving between pages
can be defined in different ways:
• The easiest way is to let ARCHICAD do it: in the object editor, press the "Hierarchical Pages" button in the User Interface Script window,

and fill in the optional parameters of the UI_PAGE command. In this case the page_number of the page selected from the tree is passed to
the library part through the "gs_ui_current_page" parameter. No need to set a value list for the paging parameter: ARCHICAD collects and
sorts all valid page ID-s from the UI_PAGE command's parameters by pre-reading the object's ui script.

• Another method is to use two buttons created with the UI_NEXT and UI_PREV commands, placing them on every page to manipulate
the value of the "gs_ui_current_page" parameter. See the UI_BUTTON command for more information.

• In case the new hierarchical page setup is not required, to create dynamic page handling, use the the UI_INFIELD{3} command. Set a value
list for "gs_ui_current_page" parameter, and place a popup using its values on every page.

page_number: the page number, a positive integer. Following interface elements are placed on this page.
parent_id: positive integer, the parent id of the page. The special value -1 value means root parent. Only evaluated if "Hierarchical Pages"

is set.
page_title: title string of the page, appears on the top of the page and the tree view popup of the pages. Only evaluated if "Hierarchical

Pages" is set.
image: file name or index number of a picture stored in the library part. If specified and not empty or 0, this icon associated to the page is

displayed on the top of the page and in tree view popup of the pages, next to the title. Only evaluated if "Hierarchical Pages" is set.
Warning: In the simple way of paging, any break of continuity in the page numbering forces the insertion of a new page without buttons, and
therefore there will be no possibility to go to any other page from there. This restriction can be circumvented using the UI_CURRENT_PAGE
command.

Non-Geometric Scripts

GDL Reference Guide 264

UI_CURRENT_PAGE
UI_CURRENT_PAGE index
Definition of the current tabpage to display.
Warning: Jumping to a non-existent page forces the insertion of a new page without buttons and controls, and therefore there is no possibility
to go to any other page from there.
index: valid index of the UI_PAGE to display.

UI_BUTTON
UI_BUTTON type, text, x, y [, width, height, id [, url]]
Button definition on current page. Buttons can be used for various purposes: moving from page to page, opening a web page or performing
some parameter-script defined action. Buttons can contain text.
type: type of the button as follows:
UI_PREV: if pressed, the previous page is displayed,
UI_NEXT: if pressed, the next page is displayed,
UI_FUNCTION: if pressed, the GLOB_UI_BUTTON_ID global variable is set to the button id specified in expression,
UI_LINK: if pressed, the URL in expression is opened in the default web browser,

text: the text that should appear on the button.
x, y: the position of the button.
width, height: width and height of the button in pixels. If not specified (for compatibility reasons) the default values are 60 pixels

for width and 20 pixels for height.
id: an integer unique identifier.
url: a string containing a URL.
UI_PREV and UI_NEXT buttons are disabled if the previous/next page is not present. If these buttons are pushed, the gs_ui_current_page
parameter of the library part is set to the index of the page to show - if there’s a parameter with this name.

Non-Geometric Scripts

GDL Reference Guide 265

Example:
! UI script
UI_CURRENT_PAGE gs_ui_current_page
UI_BUTTON UI_FUNCTION, "Go to page 9", 200,150, 70,20, 3
UI_BUTTON UI_LINK, "Visit Website", 200,180, 100,20, 0,
 "https://www.graphisoft.com"
! parameter script
if GLOB_UI_BUTTON_ID = 3 then
 parameters gs_ui_current_page = 9, ...
endif

UI_PICT_BUTTON
UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]]
Similar to the UI_BUTTON command. But this type of buttons can contain pictures.
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of

the library part. Pixel transparency is allowed in the picture.
text: has no effect for picture buttons.

UI_SEPARATOR
UI_SEPARATOR x1, y1, x2, y2
Generates a separator rectangle. The rectangle becomes a single (vertical or horizontal) separator line if x1 = x2 or y1 = y2
x1, y1: upper left node coordinates (starting point coordinates of the line).
x2, y2: lower right node coordinates (endpoint coordinates of the line).

UI_GROUPBOX
UI_GROUPBOX text, x, y, width, height
A groupbox is a rectangular separator with caption text. It can be used to visually group logically related parameters.
text: the title of the groupbox.
x, y: the position of upper left corner.
width, height: width and height in pixels.

Non-Geometric Scripts

GDL Reference Guide 266

UI_PICT
UI_PICT picture_reference, x, y [, width, height [, mask]]
Picture element in the dialog box. The picture file must be located in one of the loaded libraries.
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture

of the library part.
x, y: position of the top left corner of the picture.
width, height: optional width and height in pixels; by default, the picture’s original width and height values will be used.
mask: alpha + distortion.
See the PICTURE command for full explanation.

UI_STYLE
UI_STYLE fontsize, face_code
All the UI_OUTFIELDs and UI_INFIELDs generated after this keyword will represent this style until the next UI_STYLE statement.
fontsize: one of the following font size values:
0: small,
1: extra small,
2: large.

face_code: similar to the DEFINE STYLE command, but the values cannot be used in combination.
0: normal,
1: bold,
2: italic,
4: underline.

UI_OUTFIELD
UI_OUTFIELD expression, x, y [, width, height [, flags]]
Generates a static text.
expression: numerical or string expression.
x, y: position of the text block’s top left corner.
width, height: width and height of the text box. If omitted, the text box will wrap around the text as tight as possible for the given font.
flags:

Non-Geometric Scripts

GDL Reference Guide 267

flags = j1 + 2*j2 + 4*j3, where each j can be 0 or 1.
j1: horizontal alignment (with j2),
j2: horizontal alignment (with j1):
j1 = 0, j2 = 0: Aligns to the left edge (default),
j1 = 1, j2 = 0: Aligns to the right edge,
j1 = 0, j2 = 1: Aligns to the center,
j1 = 1, j2 = 1: Not used,
j3: grayed text.

UI_INFIELD
UI_INFIELD "name", x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...
 expression_imagen, textn]

UI_INFIELD{2}
UI_INFIELD{2} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...
 expression_imagen, textn]

Non-Geometric Scripts

GDL Reference Guide 268

UI_INFIELD{3}
UI_INFIELD{3} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1, value_definition1,
 ...
 [picIdxArray, textArray, valuesArray,
 ...]
 expression_imagen, textn, value_definitionn]

UI_INFIELD{4}
UI_INFIELD{4} "name", x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1, value_definition1,
 ...
 [picIdxArray, textArray, valuesArray,
 ...]
 expression_imagen, textn, value_definitionn]
Generates an edit text or a pop-up menu for the parameter input. A pop-up is generated if the parameter type is value list, material, fill, line
type or pencolor.
If the optional parameters of the command are present, value lists can be alternatively displayed as thumbnail view fields. Different thumbnail
control types are available. They display the specified images and associated texts and allow the selection of one single item at a time, just like
in a pop-up menu.
In the version 1 and 2 infield, the thumbnail items and the value list items are associated by indices.
The version 3 and version 4 infield defines value association which binds the thumbnail items to value list items of the associated parameter.
If a value defined in a thumbnail item isn’t present in the parameter’s value list, it won’t be displayed in the control. Identical sized arrays can
be used for lines of definition as well.
The Interface Script is rebuilt with the new value after any parameter is modified.
name: parameter name as string expression (all 4 command versions), with parameter name option for UI_INFIELD{2} and

UI_INFIELD{3}, and parameter name as text array value option for UI_INFIELD{4}.

Non-Geometric Scripts

GDL Reference Guide 269

x, y: the position of the edit text, pop-up or control.
width, height: width and height in pixels.
method: the type of the control.
1: List view control.

2: Popup menu control.

3: Popup icon radio control (arrow on picture).

4: Push icon radio control.

Non-Geometric Scripts

GDL Reference Guide 270

5: Pushbutton with text.

6: Pushbutton with picture.

7: Checkbox with text.

8: Popup list with text.

9: Popup icon radio control (arrow next to picture).

picture_name: name of the common image file containing a matrix of concatenated images, or empty string.
images_number: number of images in the matrix, for boolean parameters it can be 0 or 2.
rows_number: number of rows of the matrix.
cell_x, cell_y: width and height of a cell within the thumbnail view field, including image and text.
image_x, image_y: width and height of the image in the cell.

Non-Geometric Scripts

GDL Reference Guide 271

expression_imagei: index of image number i in the matrix, or individual file name. If a common image file name was specified, indices
must be used here. Combination of indices and individual file names does not work.

texti: text in cell number i.
value_definitioni: value definition which matches the cell with a value list item by value:
expression: numerical or string expression, or
CUSTOM: keyword, meaning that any custom value can be entered.

picIdxArray: Dynamic array of picture names (strings) or indexes (integers) in cells. Do not use mixed types in array
textArray: Dynamic array of texts in cells
valueArray: Dynamic array of parameter values in cells

Non-Geometric Scripts

GDL Reference Guide 272

Example 1:
IF c THEN
 UI_DIALOG "Hole definition parameters"
 UI_OUTFIELD "Type of hole:",15,40,180,20
 UI_INFIELD "D",190,40,105,20
 IF d="Rectangular" THEN
 UI_PICT "rect.pict",110,33,60,30
 UI_OUTFIELD "Width of hole",15,70,180,20
 UI_INFIELD "E", 190,70,105,20
 UI_OUTFIELD "Height of hole",15,100,180,20
 UI_INFIELD "F", 190,100,105,20
 UI_OUTFIELD "Distance between holes",15,130,180,20
 UI_INFIELD "G", 190,130,105,20
 ELSE
 UI_PICT "circle.pict",110,33,60,30
 UI_OUTFIELD "Diameter of hole circle",15,70,180,20
 UI_INFIELD "J", 190,70,105,20
 UI_OUTFIELD "Distance of hole centers", 15,100,180,20
 UI_INFIELD "K", 190,100,105,20
 UI_OUTFIELD "Resolution of hole circle", 15,130,180,20
 UI_INFIELD "M", 190,130,105,20
 ENDIF
 UI_OUTFIELD "Number of holes",15,160,180,20
 UI_INFIELD "I", 190,160,105,20
ENDIF
UI_SEPARATOR 50,195,250,195
UI_OUTFIELD "Material of beam", 15,210,180,20
UI_INFIELD "MAT", 190,210,105,20
UI_OUTFIELD "Pen of beam", 15,240,180,20
UI_INFIELD "P", 190,240,105,20

Non-Geometric Scripts

GDL Reference Guide 273

Example 2:
! Parameter Script:
VALUES "myParameter" "Two", "Three", "Five", CUSTOM

! Interface Script:
px = 80
py = 60
cx = px + 3
cy = py + 25

UI_INFIELD{3} "myParameter", 10, 10, 4 * cx + 21, cy + 5,
 1, "myPicture", 6,
 1, cx, cy, px, py,
 1, "1 - one", "One",
 2, "2 - two", "Two",
 3, "3 - three", "Three",
 4, "4 - four", "Four",
 5, "5 - five", "Five",
 6, "custom value", CUSTOM

Non-Geometric Scripts

GDL Reference Guide 274

Example 3:
! Parameter Script:
VALUES "myParameter" "Two", "Three", "Five", CUSTOM

! Interface Script:
px = 80
py = 60
cx = px + 3
cy = py + 25

paramNameVar = "myParameter"
UI_INFIELD{4} paramNameVar, 10, 10, 4 * cx + 21, cy + 5,
 1, "myPicture", 6,
 1, cx, cy, px, py,
 1, "1 - one", "One",
 2, "2 - two", "Two",
 3, "3 - three", "Three",
 4, "4 - four", "Four",
 5, "5 - five", "Five",
 6, "custom value", CUSTOM

Non-Geometric Scripts

GDL Reference Guide 275

Example 4:
! Master Script
dim picIdxValuesUI[]
dim textValuesUI[]
dim parameterValues[]

if myTypeParameter = 1 then
 picIdxValuesUI[1] = 6
 picIdxValuesUI[2] = 7
 picIdxValuesUI[3] = 8

 textValuesUI[1] = "6 - six"
 textValuesUI[2] = "7 - seven"
 textValuesUI[3] = "8 - eight"

 parameterValues[1] = "Six"
 parameterValues[2] = "Seven"
 parameterValues[3] = "Eight"
else
 picIdxValuesUI[1] = 6
 picIdxValuesUI[2] = 7

 textValuesUI[1] = "6 - six"
 textValuesUI[2] = "7 - seven"

 parameterValues[1] = "Six"
 parameterValues[2] = "Seven"
endif

Non-Geometric Scripts

GDL Reference Guide 276

! Parameter Script:
VALUES "myTypeParameter" 1, 2
VALUES "myStringParameter" "Two", "Three", "Five", parameterValues, CUSTOM

! Interface Script:
px = 80
py = 60
cx = px + 3
cy = py + 25

paramNameVar = "myStringParameter"
UI_INFIELD{4} paramNameVar, 10, 10, 4 * cx + 21, cy + 5,
 1, "myPicture", 6,
 1, cx, cy, px, py,
 1, "1 - one", "One",
 2, "2 - two", "Two",
 3, "3 - three", "Three",
 4, "4 - four", "Four",
 5, "5 - five", "Five",
 picIdxValuesUI, textValuesUI, parameterValues,
 9, "custom value", CUSTOM

UI_CUSTOM_POPUP_INFIELD
UI_CUSTOM_POPUP_INFIELD "name", x, y, width, height,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

UI_CUSTOM_POPUP_INFIELD{2}
UI_CUSTOM_POPUP_INFIELD{2} name, x, y, width, height,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

Compatibility: introduced in ARCHICAD 20.
Generates a popup for a value list of a parameter defined in the User Interface script to avoid using the Parameter script.

Non-Geometric Scripts

GDL Reference Guide 277

Suitable for lists which can not be requested in Parameter script. For the parameter script restrictions see the section called “REQUEST Options”.
name: parameter name as string expression for UI_CUSTOM_POPUP_INFIELD or parameter name with optional actual index values

if array for UI_CUSTOM_POPUP_INFIELD{2}.
x, y: the position of the edit text, pop-up.
width, height: width and height in pixels.
storeHiddenId, treeDepth: to set up automatic or manual trees.
storeHiddenId = 0, treeDepth = 0: works only with array parameters.
The "treeDepth" parameter is set automatically by the second dimension (number of columns) of the array.
storeHiddenId = 1, treeDepth > 0: works only with single parameters.
There must be n * (1 + treeDepth) values defined (first one for the stored ID and the rest for defining the custom tree).

groupingMethod: grouping method for sorting the tree.
1: does not sort the groups and values under the same parent.

2: sorts the groups and values under the same parent.

Non-Geometric Scripts

GDL Reference Guide 278

selectedValDescription: the text written in the field, if empty string the text will be the stored ID of the selected item.
valuei, valuesArrayi: define tree values one-by-one and/or with a one dimension array.

Example:

UI_CUSTOM_POPUP_INFIELD "stParameterName", x, y, width, height,
 1, 3, 2, "", ! storeHiddenId, treeDepth, groupingMethod, selectedValDescription
 "hiddenID1", "type1", "group1", "value1",
 "hiddenID2", "type1", "group1", "value2",
 "hiddenID3", "type2", "group2", "value1",
 "hiddenID4", "type2", "group2", "value2",
 "hiddenID5", "type2", "", "value3",
 "hiddenID6", "", "", "value4",
 "hiddenID7", "", "", "value5"

Non-Geometric Scripts

GDL Reference Guide 279

UI_RADIOBUTTON
UI_RADIOBUTTON name, value, text, x, y, width, height

UI_RADIOBUTTON{2}
UI_RADIOBUTTON{2} "name", value, text, x, y, width, height
Version {2} compatibility: introduced in ARCHICAD 20.
Generates a radio button of a radio button group. Radio button groups are defined by the parameter name. Items in the same group are
mutually exclusive.
name: parameter name or name as string expression for UI_RADIOBUTTON and parameter name as string expression (or text array

indexed value) for UI_RADIOBUTTON{2}.
value: parameter is set to this value if this radio button is set.
text: this text is displayed beside the radio button.
x, y: the position of the radio control.
width, height: width and height in pixels.

Example:
UI_RADIOBUTTON "ceilingPlan", 0, `Floor Plan`, 10, 140, 100, 20
UI_RADIOBUTTON "ceilingPlan", 1, `Ceiling Plan`, 10, 160, 100, 20

Non-Geometric Scripts

GDL Reference Guide 280

UI_PICT_RADIOBUTTON
UI_PICT_RADIOBUTTON name, value, text,
 picture_reference, x, y, width, height [UI_TOOLTIP tooltip]

UI_PICT_RADIOBUTTON{2}
UI_PICT_RADIOBUTTON{2} "name", value, text,
 picture_reference, x, y, width, height [UI_TOOLTIP tooltip]
Compatibility: introduced in ARCHICAD 22.
Generates one radio button with icon of a radio button group. Radio button groups are defined by the parameter name. Items in the same
group are mutually exclusive.
name: parameter name or name as string expression for UI_PICT_RADIOBUTTON and parameter name as string expression (or text array

indexed value) for UI_PICT_RADIOBUTTON{2}.
value: parameter is set to this value if this radio button is set.
text: this text is displayed on the button if no image is declared.
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of

the library part. Pixel transparency is allowed in the picture.
x, y: the position of the radio control (top left anchor).
width, height: width and height of the button in pixels. Image size is not declared individually: it should fit the button, as image is not

stretched automatically to fit, and is centered on the button.

UI_PICT_PUSHCHECKBUTTON
UI_PICT_PUSHCHECKBUTTON name, text, picture_reference,
 frameFlag, x, y, width, height [UI_TOOLTIP tooltip]

UI_PICT_PUSHCHECKBUTTON{2}
UI_PICT_PUSHCHECKBUTTON{2} "name", text, picture_reference,
 frameFlag, x, y, width, height [UI_TOOLTIP tooltip]
Compatibility: introduced in ARCHICAD 22.

Non-Geometric Scripts

GDL Reference Guide 281

Generates one pushcheck button with icon for a boolean parameter. Similar to the UI_INFIELD{3} command with method 6, with additional
option to control the visibility of the button frame.
name: parameter name or name as string expression for UI_PICT_PUSHCHECKBUTTON and parameter name as string expression (or

text array indexed value) for UI_PICT_PUSHCHECKBUTTON{2}.
text: this text is displayed on the button if no image is declared.
picture_reference: file name or index number of the picture stored in the library part. The index 0 refers to the preview picture of

the library part. Pixel transparency is allowed in the picture.
frameFlag: 1 - frame is displayed, 0 - frame is not visible. Use this option to match the control to other User Interface items in style.
x, y: the position of the button (top left anchor).
width, height: width and height of the button in pixels. Image size is not declared individually: it should fit the button, as image is not

stretched automatically to fit, and is centered on the button.

UI_TEXTSTYLE_INFIELD
UI_TEXTSTYLE_INFIELD name, faceCodeMask, x, y,
 buttonWidth, buttonHeight[, buttonOffsetX]

UI_TEXTSTYLE_INFIELD{2}
UI_TEXTSTYLE_INFIELD{2} "name", faceCodeMask, x, y,
 buttonWidth, buttonHeight [, buttonOffsetX]
Compatibility: introduced in ARCHICAD 22.
Generates a row of puschcheckbuttons specifically used to set font style via an integer parameter, with similar appearance as seen in the general
program interface. The format of the set value matches the input parameter of the DEFINE STYLE{2} command. Both icons and tooltips
are referenced from ARCHICAD itself, according to the localized version. The enabled buttons are displayed in a single-row arrangement.
name: parameter name or name as string expression for UI_TEXTSTYLE_INFIELD and parameter name as string expression (or text

array indexed value) for UI_TEXTSTYLE_INFIELD{2}.
faceCodeMask: used bits add the matching font style option to the control:
faceCodeMask = j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1: bold,
j2: italic,
j3: underline,
j6: superscript,

Non-Geometric Scripts

GDL Reference Guide 282

j7: subscript,
j8: strikethrough.
If faceCodeMask = 0, then all possible font style buttons are displayed. In case of an invalid faceCodeMask, "Check Script" returns with
warning ("Invalid mask value used").

x, y: the position of the first button (top left anchor).
buttonWidth, buttonHeight: width and height of one button in pixels. Full width can be calculated by using the faceCodeMask,

the buttonWidth and the buttonOffsetX values, if necessary.
buttonOffsetX: distance between neighboring buttons in the row, in pixels. Automatic, if not set.

UI_LISTFIELD
UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description_header [, value_header]]]
Generates a control for the parameter input as a scrollable list containing an arbitrary number of rows, with the following columns: icon,
description and input field for the parameter value. Lines of the list can be defined with the UI_LISTITEM command. UI_LISTFIELD and
UI_LISTITEM definitions can be scripted in an arbitrary order. Empty listfields (with no list items) are not displayed.
fieldID: the unique identifier of the listfield. This ID also used in the UI_LISTITEM commands specifies the listfield the listitems belong

to. Duplicates within a user interface script are not allowed.
x, y: position of the listfield's top left corner.
width, height: width and height in pixels.
iconFlag:
iconFlag = 0: icon column is not generated for this listfield.
iconFlag = 1: icon column is generated for this listfield (default value if not specified).

If the Custom Settings panel has only one control and this control is a listfield, the x, y, width, height parameters have no effect. In this case
the width of the listfield equals to the width of the Custom Settings panel.
description_header: the title of the Description column.
value_header: the title of the Value column.
If both description_header and value_header are empty strings or not specified, the listfield is generated without a header. If the strings contain
at least one space, the listfield is generated with an empty header.

UI_LISTITEM
UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]

Non-Geometric Scripts

GDL Reference Guide 283

UI_LISTITEM{2}
UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
Appends a listitem to the listfield defined by the fieldID parameter.
itemID: the unique identifier of the listitem. Listitems can be scripted in an arbitrary order and are sorted by itemID. Duplicate listitem

IDs within a listfield are not allowed.
fieldID: the unique identifier of the listfield containing this listitem.
name: parameter name as string expression for UI_LISTITEM or parameter name with optional actual index values if array for

UI_LISTITEM{2}.
childFlag:
childFlag = 0: the listitem is a groupitem (default value if not specified).
childFlag = 1: the listitem is a childitem. The parent item is the first groupitem above.

image: file name or index number of the picture stored in the library part. If valid, it is displayed as an icon in the first column of the
listfield in the associated listitem's row.

paramDesc: the visible name of the listitem in the Description column. If left empty, the description is automatically filled up from the
parameter list description of the Library Part. If there is no description there, the name of the parameter is displayed instead.

If "name" string is empty, the listitem is a group with bold fonttype. If both "name" string and paramDesc are empty, the listitem is a separator.
The HIDEPARAMETER command is ineffective for list items, the script should not add the item instead of using it. The LOCK command
can be used and it is effective for list items.
For a listfield it is recommended to define different itemIDs for different parameters, groups and separators.

Non-Geometric Scripts

GDL Reference Guide 284

Example:
! List with header without icon column

ui_listfield 1, 10, 35, 432, 220, 0, "Description Header Text", "Value Header Text"

ui_listitem 1, 1, "", 0, "", "Group Title 1" ! Group Line
ui_listitem 2, 1, "A", 1
ui_listitem 3, 1, "B", 1
ui_listitem 4, 1, "ZZYZX", 1

ui_listitem 5, 1, "" !separator
ui_listitem 6, 1, "AC_show2DHotspotsIn3D", 0, "", "Group Title 2" ! Group Parameter Line
ui_listitem 7, 1, "A", 1, "", "Custom Description A"
ui_listitem 8, 1, "B", 1, "", "Custom Description B"
ui_listitem 9, 1, "ZZYZX", 1, "", "Custom Description ZZYZX"

UI_CUSTOM_POPUP_LISTITEM

 UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "name", childFlag, image, paramDesc,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

Non-Geometric Scripts

GDL Reference Guide 285

UI_CUSTOM_POPUP_LISTITEM{2}

 UI_CUSTOM_POPUP_LISTITEM{2} itemID, fieldID, name, childFlag, image, paramDesc,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

Compatibility: introduced in ARCHICAD 20.
Similar to the "UI_CUSTOM_POPUP_INFIELD" and the "UI_CUSTOM_POPUP_INFIELD{2}"
Generates a listitem with popup for a value list of a parameter defined in the User Interface script to avoid using the Parameter script.
Suitable for lists which can not be requested in Parameter script. For the parameter script restrictions see the section called “REQUEST Options”.
itemID: the unique identifier of the listitem. Listitems can be scripted in an arbitrary order and are sorted by itemID. Duplicate listitem

IDs within a listfield are not allowed.
fieldID: the unique identifier of the listfield containing this listitem.
name: parameter name as string expression for UI_CUSTOM_POPUP_LISTITEM or parameter name with optional actual index values

if array for UI_CUSTOM_POPUP_LISTITEM{2}.
childFlag:
childFlag = 0: the listitem is a groupitem (default value if not specified).
childFlag = 1: the listitem is a childitem. The parent item is the first groupitem above.

image: file name or index number of the picture stored in the library part. If valid, it is displayed as an icon in the first column of the
listfield in the associated listitem's row.

paramDesc: the visible name of the listitem in the Description column. If left empty, the description is automatically filled up from the
parameter list description of the Library Part. If there is no description there, the name of the parameter is displayed instead.

storeHiddenId, treeDepth: to set up automatic or manual trees.
storeHiddenId = 0, treeDepth = 0: works only with array parameters.
The "treeDepth" parameter is set automatically by the second dimension (number of columns) of the array.
storeHiddenId = 1, treeDepth > 0: works only with single parameters.
There must be n * (1 + treeDepth) values defined (first one for the stored ID and the rest for defining the custom tree).

groupingMethod: grouping method for sorting the tree.
1: does not sort the groups and values under the same parent.

Non-Geometric Scripts

GDL Reference Guide 286

2: sorts the groups and values under the same parent.

selectedValDescription: the text written in the field, if empty string the text will be the stored ID of the selected item.
valuei, valuesArrayi: define tree values one-by-one and/or with a one dimension array.

Non-Geometric Scripts

GDL Reference Guide 287

Example:

UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "stParameterName", 0, "", "",
 1, 3, 2, "", ! storeHiddenId, treeDepth, groupingMethod, selectedValDescription
 "hiddenID1", "type1", "group1", "value1",
 "hiddenID2", "type1", "group1", "value2",
 "hiddenID3", "type2", "group2", "value1",
 "hiddenID4", "type2", "group2", "value2",
 "hiddenID5", "type2", "", "value3",
 "hiddenID6", "", "", "value4",
 "hiddenID7", "", "", "value5"

UI_TOOLTIP
UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]
UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]
UI_INFIELD "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]
UI_INFIELD{2} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]
UI_INFIELD{3} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]
UI_INFIELD{4} "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

Non-Geometric Scripts

GDL Reference Guide 288

UI_CUSTOM_POPUP_INFIELD "name", x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]
UI_CUSTOM_POPUP_INFIELD{2} name, x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]
UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]
UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]
UI_PICT expression, x, y [, width, height [, mask]] [UI_TOOLTIP tooltiptext]
UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description_header [, value_header]]]
 [UI_TOOLTIP tooltiptext]
UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]
UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]
UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
 extra parameters ...
 [UI_TOOLTIP tooltiptext]
UI_CUSTOM_POPUP_LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
 extra parameters ...
 [UI_TOOLTIP tooltiptext]
Defines the tooltip for the control on the user interface page. Tooltips are available for buttons, infields, outfields, listfields, listitems and pictures
if they are not disabled by the user in the running context (e.g., in the Help menu of ARCHICAD).
The listfield's tooltip appears in all included listitems if an item has none declared. The own tooltip of the listitem will take effect over the
tooltip of the listfield (if existing) inline.
tooltiptext: the text to display as tooltip for the control.

UI_COLORPICKER
UI_COLORPICKER "redParamName", "greenParamName", "blueParamName", x0, y0 [, width [, height]]

UI_COLORPICKER{2}
UI_COLORPICKER{2} redParamName, greenParamName, blueParamName, x0, y0 [, width [, height]]
Color picker dialog to set the r, g, b components of a color and store them into the given parameters. These values can later be used in the
LIGHT command.
redParamName, greenParamName, blueParamName: parameter names as string expression for UI_COLORPICKER or

parameter names with optional actual index values if array for UI_COLORPICKER{2}
x0, y0: position of the color picker's top left corner.

Non-Geometric Scripts

GDL Reference Guide 289

width, height: width and height in pixels.

UI_SLIDER
UI_SLIDER "name", x0, y0, width, height [, nSegments [, sliderStyle]]

UI_SLIDER{2}
UI_SLIDER{2} name, x0, y0, width, height [, nSegments [, sliderStyle]]
Generates a slider control for an integer parameter defined with a range. For integer parameters with undefined range lower and upper limit
values are -32768 (minimum signed short) and 32767 (maximum signed short).
name: parameter name as string expression parameter or name with optional actual index values for UI_SLIDER{2}.
x0, y0: position of the slider.
width, height: slider width and height in pixels. If the width > height the slider is horizontal, in the opposite case it is vertical.
nSegments: optional number of segments on the slider. If 0, no segments are displayed, if omitted or negative, the number of segments

are calculated from the range upper and lower limit values and the step defined for the parameter.
sliderStyle: optional slider style (default is 0)
0: slider points to the bottom (horizontal sliders) or to the right (vertical sliders).
1: slider points to the top (horizontal sliders) or to the left (vertical sliders).

THE FORWARD MIGRATION SCRIPT
If an element is changed completely in a newer library, compatibility can be maintained by defining the migration logic. For more detailed
information, please take a look at the section called “Forward Migration script”.

Non-Geometric Scripts

GDL Reference Guide 290

Example:

actualGUID = FROM_GUID

! ==
! Subroutines
! ==

 _startID = "AAAA-AAAA-...AAA"
 _endID = "BBBB-BBBB-...BBB"
gosub "migrationstepname_FWM"

! ==
! Set Migration GUID
! ==

setmigrationguid actualGUID

! ==
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
! ==

! ==
! migrationstepname
! ==
"migrationstepname_FWM":
 if actualGuid = _startID then
 newParameter = oldParameter
 parameters newParameter = newParameter
 actualGuid = _endID
 endif
return

FROM_GUID is the global variable holding the main ID of the original object which the migration is run on.
In case the script succeeds, the instance gets substituted by the new element with the updated parameters.

SETMIGRATIONGUID
SETMIGRATIONGUID guid

Non-Geometric Scripts

GDL Reference Guide 291

The command tells the running environment, which element will be the matching migration element for the current object. If the returned ID
belongs to the current element, the migration of the object gets complete.

STORED_PAR_VALUE
STORED_PAR_VALUE ("oldparname", outputvalue)
Retrieves the value of a parameter, which is present in the migrated object, and present or deleted in the new version object. This command
form is suggested for those parameters present in the new object as well. To get the value of an old array Parameter, the outputvalue parameter
must be initialized as an array (with the dim command).
oldparname: string expression, name of the parameter in the old parameter list.
outputvalue: output variable to store the value of the parameter.
Return value: 1 on success, 0 otherwise (for example, if there is no parameter with that name in the parameter list of the old object). During
checking the script the return value is always 0, because the old Parameters section is not known.

DELETED_PAR_VALUE
DELETED_PAR_VALUE ("oldparname", outputvalue)
Retrieves the value of a parameter, which is present in the migrated object, and present or deleted in the new version object. This command
form is suggested for those parameters deleted from the new object. To get the value of an old array Parameter, the outputvalue parameter
must be initialized as an array (with the dim command).
oldparname: string expression, name of the parameter in the old parameter list.
outputvalue: output variable to store the value of the parameter.
Return value: 1 on success, 0 otherwise (for example, if there is no parameter with that name in the parameter list of the old object). During
checking the script the return value is always 0, because the old Parameters section is not known.

THE BACKWARD MIGRATION SCRIPT
Via the Backward Migration script you can define the backward conversion logic converting new object instances to older ones. For more and
detailed information, please take a look at the section called “Backward Migration script”.

Non-Geometric Scripts

GDL Reference Guide 292

Example:

targetGUID = TO_GUID

! ==
! Subroutines
! ==

gosub "migrationstepname_BWM"

! ==
! Set Migration GUID
! ==

setmigrationguid targetGUID

! ==
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
! ==

! ==
! migrationstepname
! ==
"migrationstepname _BWM":
 if targetGUID # "" then
 bMigrationSuccess = 1
 if bMigrationSuccess = 1 then
 oldParameter = newParameter
 parameters oldParameter = oldParameter
 else
 targetGuid = ""
 endif
 endif
return

TO_GUID is the global variable holding the main ID of the target element in the conversion.
Use the SETMIGRATIONGUID command for setting targetGUID.

Non-Geometric Scripts

GDL Reference Guide 293

NEWPARAMETER
NEWPARAMETER "name", "type" [, dim1 [, dim2]]
Adds a new parameter to the parameters of a library part in the Backward Migration Script. The parameter creation happens only after the full
interpretation of the script. If a parameter with the given name already exists in the parameters list, an error occurs.
name: string expression, name of the parameter to be created.
type: string expression, type of the parameter. Possible values are:
Integer
Length
Angle
RealNum
LightSwitch
ColorRGB
Intensity
LineType
Material
FillPattern
PenColor
String
Boolean
BuildingMaterial(Compatibility: introduced in ARCHICAD 22.)
Profile(Compatibility: introduced in ARCHICAD 22.)

dim1, dim2: dim1 is the first dimension of the parameter, 0 if not set. dim2 is the second dimension of the parameter, 0 if not set.
dim1 = 0, dim2 = 0: the parameter is a scalar parameter,
dim1 > 0, dim2 = 0: the parameter is a 1 dimensional array,
dim1 > 0, dim2 > 0: the parameter is a 2 dimensional array,

Restriction of parameters:
If dim2 > 0, then dim1 > 0.

Expressions and Functions

GDL Reference Guide 294

EXPRESSIONS AND FUNCTIONS
All parameters of GDL shapes can be the result of calculations. For example, you can define that the height of the cylinder is five times the
radius of the cylinder, or prior to defining a cube, you can move the coordinate system in each direction by half the size of the cube, in order
to have the initial origin in the center of the cube rather than in its lower left corner. To define these calculations, GDL offers a large number
of mathematical tools: expressions, operators and functions.

EXPRESSIONS
You can write compound expressions in GDL statements. Expressions can be of numerical and string type. They are constants, variables,
parameters or function calls and any combination of these in operators. Round bracket pairs (()) (precedence 1) are used to override the default
precedence of the operators.
Simple type variables can be given numerical and string values, even in the same script, and can be used in numerical and string type expressions
respectively. Operations resulting in strings CANNOT be used directly as macro names in macro calls, or as attribute names in material, fill,
line type or style definitions. Variables given a string value will be treated as such and can be used wherever string values are required. If later in
the script the same variable is given a numerical value, it will be usable in numerical expressions only until it is given a string value again. Where
possible, in the precompilation process the type of the expressions is checked.

DICT
DICT variableName1[, variableName2...]
Compatibility: introduced in ARCHICAD 23.
GDL supports dictionaries. A variable is declared as a dictionary after the above declaration statement (and cannot be changed to array or
simple type or vice versa). Library part parameters can also be dictionaries, by selecting Dictionary type in the parameter list.
After the DICT keyword there can be any number of variable names separated by commas. Each variable will contain hierarchical key and
value pairs. A key of the dictionary can be referenced with dot notation. The full path of a key cannot be longer than 255 characters (counting
array indices as one character).
Dictionaries and simple type values:
• simple type (string, integer, floating-point) values can be assigned to dictionary keys,
• no declaration is necessary, the value type for the key is set by the current value:

Expressions and Functions

GDL Reference Guide 295

DICT myDictionary

myDictionary.element1 = 1
myDictionary.element1 = "hello"

print myDictionary
Dictionaries and derived type values:
• a dictionary can nest array type (with one dimension only) and dictionary type keys,
• an array inside a dictionary can contain unnamed dictionary or simple types (referenced by the index),
• however, a standalone array type parameter/variable cannot contain dictionary type elements,
• a nested array key can be initialized by referencing it right away, no need to declare with DIM in this case,
DICT myDictionary
myDictionary.myArray[1] = 1
myDictionary.myArray[2] = 5

print myDictionary
• unreferenced indexes of a nested array are automatically initialized according to the type of the first referenced element of the array (string

keys to "", numerical keys to 0, dictionary keys to {}),
DICT myDictionary
DICT dictForNesting
dictForNesting.elem1 = "hello"
dictForNesting.elem2 = "world"

myDictionary.myArray[2] = dictForNesting

print myDictionary

DICT myDictionary2
myDictionary2.myArray[3] = 33
myDictionary2.myArray[4] = 44

print myDictionary2
• the values of a nested array has to be of the same type (all string, all integer, all floating-point or all dictionary types), this is contrary to

how arrays work, so extra caution is needed!
DICT myDictionary2
myDictionary2.myArray[1] = 1
myDictionary2.myArray[2] = 1.0 ! GDL error

Expressions and Functions

GDL Reference Guide 296

• to change the value types of a nested array, it needs to be reset first: create an empty array, and overwrite the nested array with this new empty
array. The type of the next referenced value will set the type for the array after the reset automatically:
DICT myDictionary
myDictionary.myArray[1] = "hello"
print myDictionary

DIM arrayForReset[]
myDictionary.myArray = arrayForReset
print myDictionary

myDictionary.myArray[1] = 10000
print myDictionary

• changing the type of the first value of a nested array containing that value only, will not change the type of the array!
DICT myDictionary
myDictionary.myArray[1] = "hello"
print myDictionary

myDictionary.myArray[1] = 10000 ! GDL error
print myDictionary

Initialization and copying:
• the first reference of the dictionary has to be DICT dictName, a subroutine containing the name of the dictionary can not precede it

(same as with DIM arrays),
• initialization is required before the first use of a key, either explicitly with assignment to the key, or implicitly with assigning a dictionary

that contains the key at the right depth.
DICT myDictionary

myDictionary.level1.a = 1
myDictionary.level1.b = 2
myDictionary.level2 = myDictionary.level1

print myDictionary.level2.b
• writing the dictionary name without actual inner keys references the whole dictionary structure, which is accepted in some cases (CALL,

PRINT, LET statements),
• writing part of the structure references the subtree below that key as a dictionary

Expressions and Functions

GDL Reference Guide 297

DICT myDictionary
myDictionary.point1.x = 1
myDictionary.point1.y = 1
myDictionary.point1.type = 0
print myDictionary

DICT myPoint
myPoint = myDictionary.point1
print myPoint

myDictionary.point2 = myDictionary.point1
print myDictionary

• assigning all or part of a dictionary makes a deep copy of the right-hand side on the left-hand side
DICT myDictionary, tempPoint
tempPoint.x = 1
tempPoint.y = 1
myDictionary.line.point1 = tempPoint

tempPoint.x = 2
tempPoint.y = 2
myDictionary.line.point2 = tempPoint

DICT myLine
myLine = myDictionary.line
myDictionary.line.point2.x = 0
print myLine

Macro calls and requests:
• in macro calls, dictionary type values can be sent to the macro if there is a dictionary type parameter on the receiving end,
• RETURNED_PARAMETERS can work with dictionaries: an empty DICT has to be declared on the receiving end (caller object). In the

following code myDictionary is a dict type parameter in the macro, _myDictionary is a dict type variable on the caller object side:

Expressions and Functions

GDL Reference Guide 298

! caller object Master script
DICT _myDictionary

_myDictionary.element1 = 1
_myDictionary.element2 = 2

DICT _dictForReceivedData

call "macroname" parameters all myDictionary = _myDictionary,
 returned_parameters _dictForReceivedData

print _dictForReceivedData

! in the macro object Master script
myDictionary.element1 = myDictionary.element1 * 2
myDictionary.element2 = myDictionary.element2 * 2

end myDictionary
• in REQUEST options currently there is no request supporting dictionaries. However, the possibility is open for the future.
• LIBRARYGLOBAL requests cannot return dictionary type values.
Visualization and functions:
• dictionary type parameters are not visible on "All Parameters" page in the "Settings" dialog,
• dictionary type parameters are not available for Listing display or IFC mappings,
• text-like visualization works only with the PRINT command ("Check Script" warning and printed to Report window in JSON format),
• general text handling commands like TEXT2, RICHTEXT2, etc. are not supporting the complete dictionary,
• however, nested non-dictionary type values can be displayed with them,
DICT myDictionary
myDictionary.myArray[1] = "hello"
myDictionary.myArray[2] = "world"

text2 0, 0, myDictionary.myArray[1] + " " + myDictionary.myArray[2]
print myDictionary

• values for a dictionary type parameter can only be set via the Parameter script (no direct user input is available through Parameter list or UI
controls), the VALUES command is disabled for this type,

Expressions and Functions

GDL Reference Guide 299

• however, using non-dictionary parameters for user input can work. In the following code, myDictionary is a dictionary type parameter,
stTextInput is a string type parameter (which can be used in User Interface, displayed on the "All Parameters" page, and works together
with GLOB_MODPAR_NAME):
! in Parameter Script
myDictionary.text1 = stTextInput
parameters myDictionary = myDictionary

! in Master Script
print myDictionary

! in 2D script
TEXT2 0, 0, myDictionary.text1

• value replacement using the LP_XMLConverter tool is currently unavailable for dictionary type parameters.

HASKEY
HASKEY (dictionary.key)
Returns as a boolean whether key has been previously defined in dictionary (key can include sub-keys).

Example:
DICT myDictionary
myDictionary.point[1].x = 1
myDictionary.point[1].y = 1

print HASKEY(myDictionary.point) ! true
print HASKEY(myDictionary.point[2]) ! false
print HASKEY(myDictionary.point[1].z) ! false

REMOVEKEY
REMOVEKEY (dictionary.key)
The function removes the referred key from the dictionary, along with the assigned value(s). If the removal was successful, the return value is
1, othervise 0 (in case the key is non-existent or already deleted).

Expressions and Functions

GDL Reference Guide 300

Example:
DICT myDictionary
myDictionary.myText[1] = "hello"
myDictionary.myOtherText[1] = "world"

print myDictionary

_dummy = REMOVEKEY(myDictionary.myOtherText)
print myDictionary, _dummy

_dummy2 = REMOVEKEY(myDictionary.myNonExistentText)
print myDictionary, _dummy2

DIM
DIM var1[dim_1], var2[dim_1][dim_2], var3[],
 var4[][], var5[dim_1][],
 var5[][dim_2]
GDL supports one and two dimensional arrays. Variables become arrays after the above declaration statement, in which their dimensions are
specified. (Dictionary type variables cannot be redeclared as arrays or vice versa.)
After the DIM keyword there can be any number of variable names separated by commas. var1, var2, ... are the array names, while the numbers
between the brackets represent the dimensions of the array (numerical constants). Variable expressions cannot be used as dimensions. If they
are missing, the array is declared to be dynamic (one or both dimensions).
Library part parameters can also be arrays. Their actual dimensions are specified in the library part dialog. Parameter arrays do not have to be
declared in the script and they are dynamic by default. When referencing the library part using a CALL statement, the actual values of an array
parameter can be an array with arbitrary dimensions.
The elements of the arrays can be referenced anywhere in the script but if they are variables, only after the declaration.
var1[num_expr] or var1
var2[num_expr1][num_expr2] or var2[num_expr1] or var2
Writing the array name without actual indices means referencing the whole array (or a line of a two-dimensional array) which is accepted in
some cases (CALL, PRINT, LET, PUT, REQUEST, INPUT, OUTPUT, SPLIT statements). For dynamic arrays there is no limitation for the
actual index value. During the interpretation, when a non-existing dynamic array element is given a value, the necessary quantity of memory
is allocated and the missing elements are all set to 0 (numerical).
Warning! This may cause an unexpected out of memory error in some cases. Each index - even of a possibly wrong, huge value - is considered
valid, since the interpreter is unable to detect the error condition. A non-existing dynamic array element is 0 (numerical).

Expressions and Functions

GDL Reference Guide 301

Arrays having a fixed dimension are checked for the validity of the actual index on the fixed dimension. Array variables with fixed length cannot
accept dynamic array values in assignments. However, dynamic arrays that are given whole array values will take on those values. This also
applies to some statements where whole array references can be used as return parameters. (REQUEST, INPUT, SPLIT).
Array elements can be used in any numerical or string expression. They can be given string or numerical values.
Indices start with 1, and any numerical expression can be used as an index.
Array elements can be of different simple types (numerical, string, group). The type of the whole array (main type) is the type of its first element
([1] or [1][1]). Parameter and global variable arrays cannot be of mixed type.

VARDIM1
VARDIM1 (expr)

VARDIM2
VARDIM2 (expr)
These functions return as integers the actual dimension values for the (array) expression specified as a parameter. They must be used if you
want to handle correctly all actual elements of a dynamic array or an array parameter. If no element of a dynamic array was previously set, the
return value is 0. For one-dimensional arrays VARDIM2 returns 0.

Example 1: Examples for numeric expressions:
Z
5.5
(+15)
-x
a*(b+c)
SIN(x+y)*z
a+r*COS(i*d)
5' 4"
SQR (x^2 + y^2) / (1 - d)
a + b * sin (alpha)
height * width

Example 2: Examples for string expressions:
"Constant string"
name + STR ("%m", i) + "." + ext
string_param <> "Mode 1"

Expressions and Functions

GDL Reference Guide 302

Example 3: Examples for expressions using array values:
DIM tab[5], tab2[3][4] ! declaration
tab[1] + tab[2]
tab2[2][3] + A
PRINT tab
DIM f1 [5], v1[], v2[][]
v1[3] = 3 ! v1[1] = 0, v1[2] = 0, array of 3 elements
v2[2][3] = 23 ! all other elements(2 X 3) = 0
PRINT v1, v2
DIM f1 [5], v1[], v2[][]
FOR i = 1 TO VARDIM1(f1)
 f1[i] = i
NEXT i
v1 = f1
v2 [1] = f1
PRINT v1, v2

Expressions and Functions

GDL Reference Guide 303

Example 4: Examples for expressions using dictionary values:
DICT _exampleDict

! DICT simple key types

_exampleDict.false = (1 = 2) ! logical false (integer internally)
_exampleDict.true = (1 = 1) ! logical true (integer internally)
_exampleDict.int = 2 ! integer
_exampleDict.float = 1 / 3 ! floating-point
_exampleDict.string = "Custom text" ! string

! DICT array key type

 ! initialize array on-the-fly
_exampleDict.array[1] = _exampleDict.float
 ! append to array on-the-fly
_exampleDict.array[2] = _exampleDict.float * 2
 ! append to array with automatic initialization of elements in between
_exampleDict.array[4] = _exampleDict.float * 3

! DICT array of DICTs

DIM array[]
DICT _element
_element.a = "A"
_element.b = 1

_exampleDict.array = array ! change existing array to empty one
_exampleDict.array[2] = _element ! different vartype than previous

! print DICT array of DICTs
print "\n\t",
 "Print DICT array of DICTs",
 "\n--\n\t",
 vartype(_exampleDict.array), vardim1(_exampleDict.array), "\n",
 _exampleDict.array,
 "\n--"

Expressions and Functions

GDL Reference Guide 304

PARVALUE_DESCRIPTION
 PARVALUE_DESCRIPTION (parname [, ind1 [, ind2]])
This function returns the parameter value description string of a numerical parameter specified using the VALUES command statement. If no
description is specified, the returned value is an empty string.
parname: name of the parameter
ind1, ind2: actual indices if the parameter is an array.

OPERATORS
The operators below are listed in order of decreasing precedence. The evaluation of an expression begins with the highest precedence operator
and from left to right.

Arithmetical Operators

^ (or **) Power of precedence 2

* Multiplication precedence 3

/ Division precedence 3
MOD (or %) Modulo (remainder of division) x MOD y = x - y * INT (x/y) precedence 3

+ Addition precedence 4

- Subtraction precedence 4

Note
+ (addition) can also be applied to string expressions: the result is the concatenation of the strings. The result of the '/' (Division)
is always a real number, while the result of the other operations depends on the type of the operands: if all operands are integer, the
result will be integer, otherwise real.

Expressions and Functions

GDL Reference Guide 305

Relational Operators

= Equal precedence 5

< Less than precedence 5

> Greater than precedence 5

<= Less than or equal precedence 5

>= Greater than or equal precedence 5

<> (or #) Not equal precedence 5

Note
These operators can be used between any two string expressions also (string comparison is case sensitive). The result is an integer, 1
or 0. There is not recommended to use the '=' (Equal), '<=' (Less than or equal), '>=' (Greater than or equal), '<>' (or #) (Not equal)
operators with real operands, as these operations can result in precision problems.

Boolean Operators

AND (or &) Logical and precedence 6
OR (or |) Logical inclusive or precedence 7
EXOR (or @) Logical exclusive or precedence 8

Note
Boolean operators work with integer numbers. In consequence, 0 means false, while any other number means true. The value of a
logical expression is also integer, i.e., 1 for true and 0 for false. It is not recommended to use boolean operators with real operands,
as these operations can result in precision problems.

Expressions and Functions

GDL Reference Guide 306

FUNCTIONS

Arithmetical Functions
ABS
ABS (x)
Returns the absolute value of x (integer if x integer, real otherwise).

CEIL
CEIL (x)
Returns the smallest integral value that is not smaller than x (always integer). (e.g., CEIL(1.23) = 2; CEIL (-1.9) = -1).

INT
INT (x)
Returns the integral part of x (always integer). (e.g., INT(1.23) = 1, INT(-1.23) = -2).

FRA
FRA (x)
Returns the fractional part of x (integer 0 if x integer, real otherwise). (e.g., FRA(1.23) = 0.23, FRA(-1.23) = 0.77).

ROUND_INT
ROUND_INT (x)
Returns the rounded integer part of x. The 'i = ROUND_INT (x)' expression is equivalent with the following script:
IF x < 0.0 THEN i = INT (x - 0.5) ELSE i = INT (x + 0.5)

SGN
SGN (x)
Returns +1 integer if x positive, -1 integer if x negative, otherwise 0 integer.

SQR
SQR (x)
Returns the square root of x (always real).

Expressions and Functions

GDL Reference Guide 307

Circular Functions
These functions use degrees for arguments (COS, SIN, TAN) and for return values (ACS, ASN, ATN).

ACS
ACS (x)
Returns the arc cosine of x. (-1.0 <= x <= 1.0; 0° <= ACS(x) <= 180°).

ASN
ASN (x)
Returns the arc sine of x. (-1.0 <= x <= 1.0; -90° <= ASN(x) <= 90°).

ATN
ATN (x)
Returns the arc tangent of x. (-90° <= ATN(x) <= 90°).

COS
COS (x)
Returns the cosine of x.

SIN
SIN (x)
Returns the sine of x.

TAN
TAN (x)
Returns the tangent of x.

PI
PI
Returns Ludolph’s constant. (p = 3.1415926...).

Note: All return values are real.

Expressions and Functions

GDL Reference Guide 308

Transcendental Functions
EXP
EXP (x)
Returns the x th power of e (e = 2.7182818).

LGT
LGT (x)
Returns the base 10 logarithm of x.

LOG
LOG (x)
Returns the natural logarithm of x.

Note: All returned values are real.

Boolean Functions
NOT
NOT (x)
Returns false (=0 integer) if x is true (<>0), and true (=1 integer) if x is false (=0)(logical negation).

Note: Parameter value should be integer.

Statistical Functions
MIN
MIN (x1, x2, ..., xn)
Returns the smallest of an unlimited number of arguments.

MAX
MAX (x1, x2, ..., xn)
Returns the largest of an unlimited number of arguments.

Expressions and Functions

GDL Reference Guide 309

RND
RND (x)
Returns a random value between 0.0 and x (x > 0.0) always real.

Bit Functions
BITTEST
BITTEST (x, b)
Returns 1 if the b bit of x is set, 0 otherwise.

BITSET
BITSET (x, b [, expr])
expr can be 0 or different, the default value is 1. Sets the b bit of x to 1 or 0 depending on the value of the specified expression, and returns
the result. Parameter value should be integer, returned value is integer.

Special Functions
Special functions (besides global variables) can be used in the script to communicate with the executing program. They either ask the current
state and different preferences settings of the program, or refer to the current environment of the library part. Request calls can also be used
to communicate with GDL extensions.

REQ
REQ (parameter_string)
Asks the current state of the program. Its parameter - the question - is a string. The GDL interpreter answers with a numeric value. If it does
not understand the question, the answer is negative.
parameter_string: question string, one of the following:
"GDL_version": version number of the GDL compiler/interpreter. Warning: it is not the same as the ARCHICAD version.
"Program": code of the program (e.g., 1: ARCHICAD),
"Serial_number": the serial number of the keyplug,
"Model_size": size of the current 3D data structure in bytes,
"Red_of_material name"
"Green_of_material name"
"Blue_of_material name": Defines the given material’s color components in RGB values between 0 and 1,

Expressions and Functions

GDL Reference Guide 310

"Red_of_pen index"
"Green_of_pen index"
"Blue_of_pen index": Defines the given pen’s color components in RGB values between 0 and 1,
"Pen_of_RGB r g b": Defines the index of the pen closest to the given color. The r, g and b constants’ values are between 0 and 1.

REQUEST
REQUEST (question_name, name | index, variable1 [, variable2, ...])
The first parameter represents the question string while the second represents the object of the question (if it exists) and can be of either string
or numeric type (for example, the question can be "Rgb_of_material" and its object the material’s name, or "Rgb_of_pen" and its object the
index of the pen). The other parameters are variable names in which the return values (the answers) are stored.
The return value of the requests is always the number of successfully retrieved values (integer), while the type of the retrieved values is defined
by each request in part. In the case of a badly formulated question or a nonexistent name, the return value will be 0.
ARCHICAD identifies the order and number of the input parameters by either the version of the command, or the exact name (as string
constant) of the request option. Current accepted variations:
• n = REQUEST - default request, with 1 input parameter of string or numeric type
• n = REQUEST{2} - 2 input parameters: string or numeric, string type
• n = REQUEST{3} - 2 input parameters: string, string or numeric array type
• n = REQUEST{4} - 3 input parameters: string or numeric, numeric, string type. Compatibility: introduced in ARCHICAD 21.
For the list of available options see the section called “REQUEST Options”.

IND
IND (MATERIAL, name_string)
IND (BUILDING_MATERIAL, name_string)
IND (FILL, name_string)
IND (LINE_TYPE, name_string)
IND (STYLE, name_string)
IND (TEXTURE, name_string)
IND (PROFILE_ATTR, name_string, index)
This function returns the current index of the material, building material, fill, line type or style, texture or profile attribute. The main use of the
resulting number is to transfer it to a macro that requires the same attribute as the calling macro.
The functions return an attribute index (integer) value. The result is negative for inline definitions (inside the script or from Master_GDL file)
and positive for global definitions (from the project attributes).
See also the section called “Inline Attribute Definition”.

Expressions and Functions

GDL Reference Guide 311

APPLICATION_QUERY
APPLICATION_QUERY (extension_name, parameter_string, variable1, variable2, ...)
GDL allows a way for the individual applications to provide specific request functions in their context. These query options aren’t defined in
the GDL syntax; consult the GDL developer documentation of the given application for specific options. See also the section called “Application
Query Options”.

LIBRARYGLOBAL
LIBRARYGLOBAL (object_name, parameter, value)
Fills value with the current model view option parameter value of the library global object defined by object_name if available. A library global
setting is available if the global object is currently loaded in the library, or was loaded earlier and its setting was saved in the current model
view option combination.
Returns 1 if successful, 0 otherwise.
object_name: name of library global object. Must be a string constant. Warning: If string variables or parameters are used as object names,

then the 2d and 3d view of objects querying this library global object will not refresh automatically.
parameter: name of requested parameter.
value: filled with the requested parameter value.

Example:
success = LIBRARYGLOBAL ("MyGlobalOptions", "detLevel2D", det)
if success > 0 then
 text2 0, 0, det
else
 text2 0, 0, "Not available"
endif

String Functions
STR
STR (numeric_expression, length, fractions)
STR (format_string, numeric_expression)
The first form of the function creates a string from the current value of the numeric expression. The minimum number for numerical characters
in the string is length, while fractions represents the numbers following the floating point. If the converted value has more than length characters,
it is expanded as required. If it has fewer characters, it is padded on the left (length > 0) or on the right (length < 0).

Expressions and Functions

GDL Reference Guide 312

In the second form, the format_string can either be a variable or a constant. If the format is empty, it is interpreted as meters, with an accuracy
of three decimals (displaying 0s).
Restriction of parameters:
length >= -100, length <= 100
fractions <= 20, fractions < length

Example:
a=4.5
b=2.345
TEXT2 0, 2, STR(a, 8, 2) ! 4.50
TEXT2 0, 1, STR(b, 8, 2) ! 2.34
TEXT2 0, 0, STR(a*b, 8, 2) ! 10.55

STR{2}
STR{2} (format_string, numeric_expression [, extra_accuracy_string])
Extension of the second form of STR. If the extra accuracy flags are set in the format_string, the STR{2} function will return the corresponding
extra accuracy string in the 3rd parameter.
format_string: "%[0 or more flags][field_width][.precision] conv_spec"
flags: (for m, mm, cm, dm, e, df, di, sqm, sqcm, sqf, sqi, dd, gr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal):
(none): right justify (default),
-: left justify,
+: explicit plus sign,
(space): in place of a + sign,
'*0': extra accuracy Off (default),
'*1': extra accuracy .5,
'*2': extra accuracy .25,
'*3': extra accuracy .1,
'*4': extra accuracy .01,
'*5': rounding to .5 within displayed decimal range, no returned extra accuracy string, (used for area calculations),
'*6': rounding to .25 within displayed decimal range, no returned extra accuracy string, (used for area calculations),
'*7': fills the fractional part of numeric_expression into the extra_accuracy_string in case of fi or ffi, while the returned expression of
the function does not contain the fractional parts,
'#': don’t display 0s (for m, mm, cm, dm, ffi, fdi, fi, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum, l, cucm, cumm, cuf, cui, cuy, gal),
'0': display 0 inches (for ffi, fdi, fi),

Expressions and Functions

GDL Reference Guide 313

'~': hide 0 decimals (effective only if the '#' flag is not specified) (for m, mm, cm, dm, fdi, df, di, sqm, sqcm, sqf, sqi, dd, fr, rad, cum,
l, cucm, cumm, cuf, cui, cuy, gal),
'^': do not change decimal separator and digit grouping characters (if not specified, these characters will be replaced as set in the current
system).
'[1*j1+2*j2+4*j3]': display 0 feet and 0 inches before fractions, effective if the '0' flag is not specified (for ffi, fdi, fi)
j1: display 0 inches before fractions (1'-0 3/4")
j2: display 0 inches (1'-0")
j3: display 0 feet before fractions (0 3/4")

field_width: unsigned decimal integer, the minimum number of characters to generate.
precision: unsigned decimal integer, the number of fraction digits to generate.
conv_spec: (conversion specifier):
e: exponential format (meter),
m: meters,
mm: millimeters,
cm: centimeters,
dm: decimeters,
Compatibility: decimeters introduced in ARCHICAD 22.
ffi: feet & fractional inches,
fdi: feet & decimal inches,
df: decimal feet,
fi: fractional inches,
di: decimal inches,
pt: points,
for areas:
sqm: square meters,
sqcm: square centimeters,
sqmm: square millimeters,
sqf: square feet,
sqi: square inches,
for angles:
dd: decimal degrees,

Expressions and Functions

GDL Reference Guide 314

dms: degrees, minutes, seconds,
gr: grads,
rad: radians,
surv: surveyors unit,
for volumes:
cum: cubic meters,
l: liters,
cucm: cubic centimeters,
cumm: cubic millimeters,
cuf: cubic feet,
cui: cubic inches,
cuy: cubic yards,
gal: gallons.

Example:
nr = 0.345678
TEXT2 0, 23, STR ("%m", nr) !0.346
TEXT2 0, 22, STR ("%#10.2m", nr) !35
TEXT2 0, 21, STR ("%.4cm", nr) !34.5678
TEXT2 0, 20, STR ("%12.4cm", nr) ! 34.5678
TEXT2 0, 19, STR ("%.6mm", nr) !345.678000
TEXT2 0, 18, STR ("%+15e", nr) !+3.456780e-01
TEXT2 0, 17, STR ("%ffi", nr) !1'-2"
TEXT2 0, 16, STR ("%0.16ffi", nr) !1'-1 5/8"
TEXT2 0, 15, STR ("% .3fdi", nr) ! 1'-1.609"
TEXT2 0, 14, STR ("% -10.4df", nr) ! 1.1341'
TEXT2 0, 13, STR ("%0.64fi", nr) !13 39/64"
TEXT2 0, 12, STR ("%+12.4di", nr)!+13.6094"
TEXT2 0, 11, STR ("%#.3sqm", nr) !346
TEXT2 0, 10, STR ("%+sqcm", nr) !+3,456.78
TEXT2 0, 9, STR ("% .2sqmm", nr)! 345,678.00
TEXT2 0, 8, STR ("%-12sqf", nr) !3.72
TEXT2 0, 7, STR ("%10sqi", nr) ! 535.80
TEXT2 0, 6, STR ("%.2pt", nr) !0.35

Expressions and Functions

GDL Reference Guide 315

alpha = 88.657
TEXT2 0, 5, STR ("%+10.3dd", alpha) !+88.657°
TEXT2 0, 4, STR ("%.1dms", alpha) !88°39'
TEXT2 0, 3, STR ("%.2dms", alpha) !88°39'25"
TEXT2 0, 2, STR ("%10.4gr", alpha) ! 98.5078G
TEXT2 0, 1, STR ("%rad", alpha) !1.55R
TEXT2 0, 0, STR ("%.2surv", alpha) !N 1°20'35" E

nr = 1'-0 3/4"
TEXT2 0, -1, STR ("%[1].16ffi", nr) !1'-0 3/4"
nr = 1'-0"
TEXT2 0, -2, STR ("%[5].16ffi", nr) !1'
nr = 0 3/4"
TEXT2 0, -3, STR ("%#[7].16ffi", nr) !0 3/4"

nr = 0.34278
TEXT2 0, 0, STR ("%*5 .4m", nr) !0.3430

! split to integral and fractional parts
extra_accuracy_string = ""
nr = 1'-0 3/4"

TEXT2 0, -3, STR{2}("%*7.16ffi", nr, extra_accuracy_string) !1'-
TEXT2 0, -4, extra_accuracy_string !3/4"

SPLIT
SPLIT (string, format, variable1 [, variable2, ..., variablen])
Splits the string parameter according to the format in one or more numeric or string parts. The split process stops when the first non-matching
part is encountered. Returns the number of successfully read values (integer).
string: the string to be split.
format: any combination of constant strings, %s, %n and %^n -s. Parts in the string must fit the constant strings, %s denotes any string

value delimited by spaces or tabs, while %n or %^n denotes any numeric value. If the '^' flag is present, current system settings for decimal
separator and digit grouping characters are taken into consideration when matching the actual numerical value.

variablei: names of the variables to store the split string parts.

Expressions and Functions

GDL Reference Guide 316

Example:
ss = "3 pieces 2x5 beam"
n = SPLIT (ss, "%n pieces %nx%n %s", num, ss1, size1, ss2, size2, name)
IF n = 6 THEN
 PRINT num, ss1, size1, ss2, size2, name ! 3 pieces 2 x 5 beam
ELSE
 PRINT "ERROR"
ENDIF

STW
STW (string_expression)
Returns the (real) width of the string in millimeters displayed in the current style. The width in meters, at current scale, is STW
(string_expression) / 1000 * GLOB_SCALE.

Example:

DEFINE STYLE "own" "Gabriola", 180000 / GLOB_SCALE, 1, 0
SET STYLE "own"
string = "abcd"
width = STW (string) / 1000 * GLOB_SCALE
n = REQUEST ("Height_of_style", "own", height)
height = height / 1000 * GLOB_SCALE
TEXT2 0,0, string
RECT2 0,0, width, -height

STRLEN
STRLEN (string_expression)
Returns the (integer) length of the string (the number of characters)

Expressions and Functions

GDL Reference Guide 317

STRSTR
STRSTR (string_expression1, string_expression2[, case_insensitivity])
Returns the (integer) position of the first appearance of the second string in the first string. If the first string doesn’t contain the second one,
the function returns 0.
Note: In case string_expression2 is an empty string, the function returns 1.
case_insensitivity:
0 or not set: Case sensitive
1: Case insensitive

Example 1:
szFormat = ""
n = REQUEST ("Linear_dimension", "", szFormat)
unit = ""
IF STRSTR (szFormat, "m") > 0 THEN unit = "m"
IF STRSTR (szFormat, "mm") > 0 THEN unit = "mm"
IF STRSTR (szFormat, "cm") > 0 THEN unit = "cm"
IF STRSTR (szFormat, "dm") > 0 THEN unit = "dm"
TEXT2 0, 0, STR (szFormat, a) + " " + unit !1.00 m

Example 2:
STRSTR ("abcdefg", "BCdEf") = 0
STRSTR ("abcdefg", "BCdEf", 0) = 0
STRSTR ("abcdefg", "BCdEf", 1) = 2

STRSUB
STRSUB (string_expression, start_position, characters_number)
Returns a substring of the string parameter that begins at the position given by the start_position parameter and its length is characters_number
characters.

Example:
string = "Flowers.jpeg"
len = STRLEN (string)
iDotPos = STRSTR (string, ".")
TEXT2 0, -1, STRSUB (string, 1, iDotPos - 1) !Flowers
TEXT2 0, -2, STRSUB (string, len - 4, 5) !.jpeg

Expressions and Functions

GDL Reference Guide 318

STRTOUPPER
STRTOUPPER (string_expression)
Returns a string converted to uppercase.

Example:
_oldString = "flower"
_newString = STRTOUPPER (_oldString) ! _newString will be "FLOWER"

STRTOLOWER
STRTOLOWER (string_expression)
Returns a string converted to lowercase.

Example:
_oldString = "FLOWER"
_newString = STRTOLOWER (_oldString) ! _newString will be "flower"

Control Statements

GDL Reference Guide 319

CONTROL STATEMENTS
This chapter reviews the GDL commands available for controlling loops and subroutines in scripts and introduces the concept of buffer manipulation designed to store
parameter values for further use. It also explains how to use objects as macro calls and how to display calculated expressions on screen.

FLOW CONTROL STATEMENTS

FOR - TO - NEXT
FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name
FOR is the first statement of a FOR loop.
NEXT is the last statement of a FOR loop.
The loop variable varies from the initial_value to the end_value by the step_value increment (or decrement) in each execution of the body of
the loop (statements between the FOR and NEXT statements). If the loop variable exceeds the value of the end_value, the program executes
the statement following the NEXT statement.
If the STEP keyword and the step_value are missing, the step is assumed to be 1.

Note: Changing the step_value during the execution of the loop has no effect.
A global variable is not allowed as a loop control variable.

Example 1:
FOR i=1 TO 10 STEP 2
 PRINT i
NEXT i

Control Statements

GDL Reference Guide 320

Example 2:
! The two program fragments below are equivalent:

! 1st
a = b
1:
IF c > 0 AND a > d OR c < 0 AND a < d THEN 2
PRINT a
a = a + c
GOTO 1

! 2nd
2:
FOR a = b TO d STEP c
 PRINT a
NEXT a
The above example shows that step_value = 0 causes an infinite loop.
Only one NEXT statement is allowed after a FOR statement. You can exit the loop with the GOTO command and to return after leaving,
but you cannot enter a loop skipping the FOR statement.

DO - WHILE
DO [statment1
 statement2
 ...
 statementn]
WHILE condition
The statements between the keywords are executed as long as the condition is true.
The condition is checked after each execution of the statements.

WHILE - ENDWHILE
WHILE condition DO
 [statement1
 statement2
 ...
 statementn]
ENDWHILE

Control Statements

GDL Reference Guide 321

The statements between the keywords are executed as long as the condition is true.
The condition is checked before each execution of the statements.

REPEAT - UNTIL
REPEAT [statement1
 statement2
 ...
 statementn]
UNTIL condition
The statements between the keywords are executed until the condition becomes true.
The condition is checked after each execution of the statements.

Control Statements

GDL Reference Guide 322

Example: The following four sequences of GDL commands are equivalent
! 1st
FOR i = 1 TO 5 STEP 1
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
NEXT i

! 2nd
i = 1
DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
WHILE i <= 5

! 3rd
i = 1
WHILE i <= 5 DO
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
ENDWHILE

! 4th
i = 1
REPEAT
 BRICK 0.5, 0.5, 0.1
 ADDZ 0.3
 i = i + 1
UNTIL i > 5

IF - GOTO
IF condition THEN label
IF condition GOTO label
IF condition GOSUB label
Conditional jump statement. If the value of the condition expression is 0 (logical 'false'), the command has no effect, otherwise execution
continues at the label. THEN, GOTO or THEN GOTO are equivalent in this context.

Control Statements

GDL Reference Guide 323

Example:
IF a THEN 28
IF i > j GOTO 200+i*j
IF i > 0 GOSUB 9000

IF - THEN - ELSE - ENDIF
IF condition THEN statement [ELSE statement]
IF condition THEN
 [statement1
 statement2
 ...
 statementn]
[ELSE
 statementn+1
 statementn+2
 ...
 statementn+m]
ENDIF
If you write only one command after keywords THEN and/or ELSE in the same row, there is no need for ENDIF. A command after THEN
or ELSE in the same row means a definite ENDIF.
If there is a new row after THEN, the successive commands (all of them until the keyword ELSE or ENDIF) will only be executed if the
expression in the condition is true (other than zero). Otherwise, the commands following ELSE will be carried out. If the ELSE keyword is
absent, the commands after ENDIF will be carried out.

Control Statements

GDL Reference Guide 324

Example:
IF a = b THEN height = 5 ELSE height = 7
IF needDoors THEN
 CALL "door_macro" PARAMETERS
 ADDX a
ENDIF
IF simple THEN
 HOTSPOT2 0, 0
 RECT2 a, 0, 0, b
ELSE PROJECT2 3, 270, 1
IF name = "Sphere" THEN
 ADDY b
 SPHERE 1
ELSE
 ROTX 90
 TEXT 0.002, 0, name
ENDIF

GOTO
GOTO label
Unconditional jump statement. The program executes a branch to the statement denoted by the value of the label (numerical or string). Variable
label expressions can slow down interpretation due to runtime jumping address determination.

Example:
GOTO K+2

GOSUB
GOSUB label
Internal subroutine call where the label is the entry point of the subroutine. Label value can be any numerical or string expression. Variable
label expressions can slow down interpretation due to runtime jumping address determination.

RETURN
RETURN
Return from an internal subroutine.

Control Statements

GDL Reference Guide 325

END / EXIT
END [v1, v2, ..., vn]
EXIT [v1, v2, ..., vn]
End of the current GDL script. The program terminates or returns to the level above. It is possible to use several ENDs or EXITs in a GDL
file. If the optional list of values is specified, the current script will pass these return values to its caller.
Note: the number of possible returned elements is limited at 32767 items.
See the description of receiving returned parameters at the CALL command.

BREAKPOINT
BREAKPOINT expression
With this command, you can specify a breakpoint in the GDL script. The GDL debugger will stop at this command if the value of the parameter
(a numeric expression) is true (1) and the Enable Breakpoints option of the debugger is checked. In normal execution mode, the GDL interpreter
simply steps over this command.

PARAMETER BUFFER MANIPULATION
The parameter buffer is a built-in data structure that may be used if some values (coordinates, for example) change after a definite rule that can
be described using a mathematical expression. This is useful if, for instance, you want to store the current values of your variables.

PUT NSP = NSP+1

The parameter buffer is an infinitely long array in which you can store numeric values using the PUT command. PUT stores the given values
at the end of the buffer. These values can later be used (by the GET and USE commands) in the order in which they were entered (i.e., the
first stored value will be the first one used). A GET(n) or USE(n) command is equivalent with n values separated by commas. This way, they
can be used in any GDL parameter list where n values are needed.

GET NSP = NSP-1

Control Statements

GDL Reference Guide 326

USE NSP = NSP

PUT
PUT expression [, expression, ...]
Store the given values in the given order in the internal parameter buffer.

GET
GET (n)
Use the next n values from the internal parameter buffer and then disregard them.

USE
USE (n)
Use the next n values from the internal parameter buffer without deleting them. Following USE and GET functions can use the same parameter
sequence.

NSP
NSP
Returns the number of stored parameters in the internal buffer.

Control Statements

GDL Reference Guide 327

Example: Using the parameter buffer:

r=2: b=6: c=4: d=10
n=12

s=180/n
FOR t=0 TO 180 STEP s
 PUT r+r*COS(T), c-r*SIN(t), 1
NEXT t
FOR i=1 TO 2
 EXTRUDE 3+NSP/3, 0,0,d, 1+16,
 0, b, 0,
 2*r, b, 0,
 USE(NSP),
 0, b, 0
 MULY -1
NEXT i
DEL 1
ADDZ d
REVOLVE 3+NSP/3, 180, 0,
 0, b, 0,
 2*r, b, 0,
 GET(NSP),
 0, b, 0

The full description:

Control Statements

GDL Reference Guide 328

r=2: b=6: c=4: d=10
FOR i=1 TO 2
 EXTRUDE 16, 0,0,d, 1+16,
 0, b, 0,
 2*r, b, 0,
 2*r, c, 1,
 r+r*COS(15), c-r*SIN(15), 1,
 r+r*COS(30), c-r*SIN(30), 1,
 r+r*COS(45), c-r*SIN(45), 1,
 r+r*COS(60), c-r*SIN(50), 1,
 r+r*COS(75), c-r*SIN(75), 1,
 r+r*COS(90), c-r*SIN(90), 1,
 r+r*COS(105), c-r*SIN(105), 1,
 r+r*COS(120), c-r*SIN(120), 1,
 r+r*COS(135), c-r*SIN(135), 1,
 r+r*COS(150), c-r*SIN(150), 1,
 R+R*COS(165), c-r*SIN(165), 1,
 0, b, 1,
 0, b, 0
 MULY -1
NEXT i
DEL 1

Control Statements

GDL Reference Guide 329

ADDZ d
REVOLVE 16, 180, 0,
 0, b, 0,
 2*r, b, 0,
 2*r, c, 1,
 r+r*COS(15), c-r*SIN(15), 1,
 r+r*COS(30), c-r*SIN(30), 1,
 r+r*COS(45), c-r*SIN(45), 1,
 r+r*COS(60), c-r*SIN(50), 1,
 r+r*COS(75), c-r*SIN(75), 1,
 r+r*COS(90), c-r*SIN(90), 1,
 r+r*COS(105), c-r*SIN(105), 1,
 r+r*COS(120), c-r*SIN(120), 1,
 r+r*COS(135), c-r*SIN(135), 1,
 r+r*COS(150), c-r*SIN(150), 1,
 r+r*COS(165), c-r*SIN(165), 1,
 0, b, 1,
 0, b, 0

MACRO OBJECTS
Although the 3D objects you may need can always be broken down into complex or primitive elements, sometimes it is desirable to define
these complex elements specifically for certain applications. These individually defined elements are called macros. A GDL macro has its own
environment which depends on its calling order. The current values of the MODEL, RADIUS, RESOL, TOLER, PEN, LINE_TYPE,
MATERIAL, FILL, STYLE, SHADOW options and the current transformation are all valid in the macro. You can use or modify them,
but the modifications will only have an effect locally. They do not take effect on the level the macro was called from. Giving parameters to a
macro call means an implicit value assignment on the macro’s level. The parameters A and B are generally used for resizing objects.

CALL
CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ..., namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]
macro_name_string: string, the name of an existing library part

Macro names cannot be longer than 31 characters. Macro names can be string constants, string variables or parameters. String operations
cannot be used with a macro call as a macro name. Warning: If string variables or parameters are used as macro names, the called macro
may not be included in the archive project. To let GDL know about the dependency, use the FILE_DEPENDENCE command for each

Control Statements

GDL Reference Guide 330

possible macro name. The macro name must be put between quotation marks (",',`,´,”,’,“,‘), unless it matches the definition of identifiers,
i.e., it begins with a letter or a '_' or '~' character and contains only letters, numbers and the '_' and '~' characters. Otherwise, the quotation
marks used in the CALL command must be the same at the beginning and at the end, and should be different from any character of the
macro name. Macro name itself also can be used as a command, without the CALL keyword.

PARAMETERS: the actual parameter list of the macro can follow
The parameter names of the called macro can be listed in any sequence, with both an '=' sign and an actual value for each. You can use string
type expressions here, but only give a string value to string type parameters of the called macro. Array parameters have to be given full array
values. If a parameter name in the parameter list cannot be found in the called macro, you will get an error message. Parameters of the called
macro that are not listed in the macro call will be given their original default values as defined in the library part called as a macro.

ALL: all parameters of the caller are passed to the macro
If this keyword is present, there is no need to specify the parameters one by one. For a parameter of the macro which cannot be found in
the caller, the default value will be used. If parameter values are specified one by one, they will override the values coming from the caller
or parameters of the called macro left to be default.

RETURNED_PARAMETERS: a variable list can follow to collect the returned parameters of the macro
At the caller’s side, returned values can be collected using the RETURNED_PARAMETERS keyword followed by a variable list. The returned
values will be stored in these variables in the order they are returned in the called macro. The number and the type of the variables specified
in the caller and those returned in the macro must match. If there are more variables specified in the caller, they will be set to 0 integers.
Type compatibility is not checked: the type of the variables specified in the caller will be set to the type of the returned values. If one of the
variables in the caller is a dynamic array, all subsequent values will be stored in it. Note: the number of possible returned elements is limited at 32767
items. See the syntax of returning parameters at the END / EXIT command.

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ..., valuen or DEFAULT]

This form of macro call can be used for compatibility with previous versions. Using this syntax the actual parameter values have to be specified
one by one in the order they are present in the called library part, no value can be missed, except from the end of the list. Using the DEFAULT
keyword in place of a parameter actual value means that the actual value will be the default value stored in the library part. For the missing
values defaults will be used automatically (the number of actual values n can be smaller than the number of parameters). When interpreting this
kind of macro call there is no need to find the parameters by name to assign them the actual value, so even though it is more uncomfortable
to use than the previous ones, a better performance can be achieved.
CALL macro_name_string [, parameter_list]

Control Statements

GDL Reference Guide 331

This form of macro call can be used for compatibility with previous versions. Can be used with simple GDL text files as well as any library
part, on the condition that its parameter list contains only single-letter numerical parameters (A ... Z). No string type expressions or arrays are
allowed with this method. The parameter list is a list of simple numerical values: the value of parameter A will be the first value in the list, the
value of parameter B will be the second value, and so on. If there are less than A ... Z values specified in the parameter list, for the missing
values 0 will be used automatically. If the (library part) macro does not have a single-letter parameter corresponding to the value, interpretation
will continue by skipping this value, but you will get a warning from the program.

Example:
CALL "leg" 2, , 5 ! A = 2, B = 0, C = 5 leg 2, , 5
CALL "door-1" PARAMETERS height = 2, a = 25.5,
 name = "Director"
CALL "door-1" PARAMETERS ! use parameter default values

OUTPUT IN AN ALERT BOX OR REPORT WINDOW

PRINT
PRINT expression [, expression, ...]
Writes all of its arguments in a dialog box or the Report Window, depending on Work Environment (see the section called “GDL warnings”).
Arguments can be strings or numeric expressions of any number in any sequence, separated by commas.

Example:
PRINT "loop-variable:", i
PRINT j, k-3*l
PRINT "Beginning of interpretation"
PRINT a * SIN (alpha) + b * COS (alpha)
PRINT "Parameter values: ", "a = ", a, ", b = ", b
PRINT name + STR ("%m", i) + "." + ext

FILE OPERATIONS
The following keywords allow you to open external files for reading/writing and to manipulate them by putting/getting values from/to GDL
scripts. This process necessarily involves using special Add-On extensions. Text files can be handled by the section called “GDL Text I/O Add-
On”. Add-Ons for other file types can be developed by third parties.
See also the section called “GDL Text I/O Add-On”.

Control Statements

GDL Reference Guide 332

OPEN
OPEN (filter, filename, parameter_string)
Opens a file as directed. Its return value is a positive integer that will identify the specific file, -2 if the add-on is missing, -1 if the file is missing.
If positive, this value, the channel number, will be the file’s reference number in succeeding instances. To include the referenced file in the
archive project, use the FILE_DEPENDENCE command with the file name.
filter: string, the name of an existing extension.
filename: string, the name of the file.
parameter_string: string, it contains the specific separation characters of the operational extension and the mode of opening. Its

contents are interpreted by the extension.

INPUT
INPUT (channel, recordID, fieldID, variable1 [, variable2, ...])
The number of given parameters defines the number of values from the starting position read from the file identified by the channel value.
The parameter list must contain at least one value. This function puts the read values into the parameters as ordered. These values can be of
numeric or string type, independent of the parameter type defined for storage.
The return value is the number of the successfully read values. When encountering an end of file character, -1 is returned.
recordID, fieldID: the string or numeric type starting position of the reading, its contents are interpreted by the extension.

VARTYPE
VARTYPE (expression)
Returns the type of the expression:
• 1 - numerical
• 2 - string
• 3 - group (as result of the ADDGROUP command and such)
• 4 - dictionary
Useful when reading values in variables with the INPUT command, which can change between type 1 and 2 according to the current values.
The type of these variables is not checked during the compilation process.

OUTPUT
OUTPUT channel, recordID, fieldID, expression1 [, expression2, ...]
Writes as many values into the file identified by the channel value from the given position as there are defined expressions. There has to be at
least one expression. The type of values is the same as those of the expressions.

Control Statements

GDL Reference Guide 333

recordID, fieldID: the string or numeric type starting position of the writing; its contents are interpreted by the extension.

CLOSE
CLOSE channel
Closes the file identified by the channel value.

USING DETERMINISTIC ADD-ONS
The following keywords allow you to call GDL add-ons which provide a deterministic function, i.e. the result of a given operation depends
on the specified parameters only. This process necessarily involves using special Add-On extensions. For example polygon operations can be
executed via the PolyOperations add-on. Add-Ons for other operations can be developed by third parties.
See also the section called “Polygon Operations Extension”.

INITADDONSCOPE
INITADDONSCOPE (extension, parameter_string1, parameter_string2)
Opens a channel as directed. Its return value is a positive integer that will identify the specific connection. This value, the channel number, will
be the connection’s reference number in succeeding instances.
extension: string, the name of an existing extension.
parameter_string1: string, its contents are interpreted by the extension.
parameter_string2: string, its contents are interpreted by the extension.

PREPAREFUNCTION
PREPAREFUNCTION channel, function_name, expression1 [, expression2, ...]
Sets some values in the add-on as a preparation step for calling a later function.
function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.
expression: parameters to be passed for the preparation step.

CALLFUNCTION
CALLFUNCTION (channel, function_name, parameter, variable1 [, variable2, ...])
The function named function_name in the add-on specified by channel is called. The parameter list must contain at least one value. This function
puts the returned values into the parameters as ordered. The return value is the number of the successfully set values.
channel: channel value, used to identify the connection.

Control Statements

GDL Reference Guide 334

function_name: the string or numeric identifier of the function to be called; its contents are interpreted by the extension.
parameter: input parameter; its contents are interpreted by the extension.
variablei: output parameter.

CLOSEADDONSCOPE
CLOSEADDONSCOPE channel
Closes the connection identified by the channel value.

Miscellaneous

GDL Reference Guide 335

MISCELLANEOUS
GDL can also handle a number of operations on external files through special Add-On applications. The commands used to achieve this are described in this chapter
and illustrated with an example.

GLOBAL VARIABLES
The global variables make it possible to store special values of the model. This allows you to access geometric information about the environment
of the GDL macro. For example, you can access the wall parameters when defining a window which has to fit into the wall. Global variables
are not stacked during macro calls.
For doors, windows, labels and property library parts there is one more possibility to communicate with ARCHICAD through fix named,
optional parameters. These parameters, if present on the library part’s parameter list, are set by ARCHICAD. See the list of fix named parameters
and more details in the section called “Fix named optional parameters”.

Script compatibility
View or project dependent global variables should not be used in parameter scripts (or master scripts run as parameter script) to avoid
the parameter script run occasions and the resulting parameter values becoming context dependent, inconsistent within the planfile.
Compatibility up to ARCHICAD 19: Such globals accidentally used in parameter script generate GDL warnings.
Compatibility starting from ARCHICAD 20: Such globals used in parameter script generate GDL warnings, and will contain a static default value only (type-
matching).
Compatibility starting from ARCHICAD 22: View dependent global variables should not be used in property scripts (or master scripts run as property script). Such
instances will cause warnings in scripts. However, project dependant variables are enabled in property script most cases.
For compatibility details, check out the global variable descriptions. Script type restrictions apply where indicated.
Legend

works without restriction

works (with additional warning)

contains dummy default value (with additional warning)

Miscellaneous

GDL Reference Guide 336

General environment information
GLOB_SCRIPT_TYPE type of current script

• 1 - properties script
• 2 - 2D script
• 3 - 3D script
• 4 - user interface script
• 5 - parameter script
• 6 - master script
• 7 - forward migration script
• 8 - backward migration script

GLOB_VIEW_TYPE type of current view (view dependent, do not use in parameter/property scripts).

2D 3D UI Parameter Property Default -

• 2 - 2D (Floor Plan)
• 3 - 3D
• 4 - Section
• 5 - Elevation
• 6 - 3D Document
• 7 - Detail
• 8 - Layout
• 9 - Calculation
Use the exact needed values. Using ranges are not recommended due to possible future value extensions.

GLOB_PREVIEW_MODE type of current preview (view dependent, do not use in parameter/property scripts)

• 0 - None
• 1 - Dialog
• 2 - Listing
• 3 - Favorite saving
Use the exact needed values. Using ranges are not recommended due to possible future value extensions.

GLOB_FEEDBACK_MODE indicates editing in progress (view dependent, do not use in parameter/property scripts)

0 - off, 1 - editing feedback mode

Miscellaneous

GDL Reference Guide 337

GLOB_SEO_TOOL_MODE indicates solid element operations in progress (view dependent, do not use in parameter/property
scripts)

0 - off, 1 - solid element operations mode

GLOB_DIAGNOSTICS_MODE Library Developer (59) menu command for GDL diagnostics

Compatibility: introduced in ARCHICAD 23.
0 - off, 1 - on
Use in scripts as a conditional statement to visualize debug content of library parts.

GLOB_SCALE drawing scale (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 100

according to the current window

GLOB_DRAWING_BGD_PEN pen of the drawing background color (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 19

the best matching (printable) pen from the current palette to the background color of the current window

GLOB_FILL_INDEX_SOLID index of fill type "Solid" according to the template (project dependent, do not use in parameter
script)

2D 3D UI Parameter Property Default 16

contains the applied index of the fill type "Solid"
Compatibility: introduced in ARCHICAD 22.

GLOB_FILL_INDEX_BACKGROUND index of fill type "Background" according to the template (project dependent, do not use in
parameter script)

2D 3D UI Parameter Property Default 16

contains the applied index of the fill type "Background"
Compatibility: introduced in ARCHICAD 22.

GLOB_NORTH_DIR project North direction (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 90

relative to the default project coordinate system according to the settings made in the Project Location dialog

Miscellaneous

GDL Reference Guide 338

GLOB_PROJECT_LONGITUDE project longitude (project dependent, do not use in parameter script)

GLOB_PROJECT_LATITUDE project latitude (project dependent, do not use in parameter script)

GLOB_PROJECT_ALTITUDE project altitude (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0

the geographical coordinates of the project origin according to the settings specified in the Project Location dialog

GLOB_PROJECT_DATE project date (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default [0, 0, 0,
0, 0, 0]

array of the following six values: 1 - year, 2 - month, 3 - day, 4 - hour, 5 - minute, 6 - second. This variable contains the project's current date and is only set in the EcoDesigner
STAR® add-on (in other cases all values are set to 0). The value of this variable is modified by the add-on when running the solar analysis routines to allow certain GDL objects
(for example deciduous trees) to be represented differently at different times of the year.

GLOB_WORLD_ORIGO_OFFSET_X (project dependent, do not use in parameter script)

GLOB_WORLD_ORIGO_OFFSET_Y (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0

Position of the project origin relative to the world origin. See Illustrating the usage of the GLOB_WORLD_ORIGO_... globals.

GLOB_MODPAR_NAME name of the last modified parameter

in the settings dialog or library part editor, including parameters modified through editable hotspots.

GLOB_UI_BUTTON_ID id of the button pushed on the UI page

or 0, if the last action was not the push of a button with id.

GLOB_CUTPLANES_INFO (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default [1.,, 3.0,
-0.1, -0.1]

array of 4 length values: 1 - cutplane height, 2 - cutplane top level, 3 - cutplane bottom level, 4 - absolute display limit, in the library part’s local coordinate system. See details in
ARCHICAD Set Floor Plan Cutplane dialog.

Miscellaneous

GDL Reference Guide 339

GLOB_STRUCTURE_DISPLAY structure display detail (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0

informs about the partial structure display option settings (integer): 0 - entire structure, 1 - core only, 2 - without finishes

GLOB_ISSUE_SCHEME list of custom data defined in the Issue Scheme

2D 3D UI Parameter Property Default -

Available in all context. 2-row string array, containing the names of fields defined in the Issue Scheme (first row), with the corresponding GUIDs (second row). The first five columns
are fixed: Revision ID, Issue ID, Issue Name, Issue Date, Issued by.
For example:

Revision ID Issue ID Issue Name Issue Date Issued By Recipient Status ...

{RevIdGUID} {IssueIdGUID} {IssueNameGUID} {IssueDateGUID} {IssuedByGUID} {Custom1GUID} {Custom2GUID}

LAYOUT_REVISION_HISTORY list of the current Layout's Revision History

2D 3D UI Parameter Property Default -

Available in Layout context only. String array, containing 1 row per Revision, in the same structure as GLOB_ISSUE_SCHEME. The first five columns are fixed: Revision
ID, Issue ID, Issue Name, Issue Date, Issued by.
For example:

01 1 First Issue 2013-06-30 user1 Everyone SD ...

02 3 General Update 2013-07-31 user2 Mechanical DD

03 5 Structural Update 2013-08-31 user1 Structural DD

...

Miscellaneous

GDL Reference Guide 340

GLOB_CHANGE_SCHEME list of custom data defined in the Change Scheme

2D 3D UI Parameter Property Default -

Available in all context. 2-row string array, containing the names of fields defined in the Change Scheme (first row), with the corresponding GUIDs (second row). The first five
columns are fixed: Revision ID, Change ID, Change Name, Last Modified Date, Last Modified by.
For example:

Revision ID Change ID Change
Description

Last Modified Last Modified By Created by Approved by ...

{RevIdGUID} {ChIdGUID} {ChDescGUID} {ModiTimeGUID} {ModiByGUID} {Custom1GUID} {Custom2GUID}

LAYOUT_CHANGE_HISTORY list of all the Changes appearing in the current Layout's Revision History

2D 3D UI Parameter Property Default -

Available in Layout context only. String array, containing 1 row per Change, in the same structure as GLOB_CHANGE_SCHEME. The first five columns are fixed: Revision
ID, Change ID, Change Name, Last Modified Date, Last Modified by.
For example:

2 Ch-13 Kitchen 2013-07-13 user1 Architect 1 Lead Architect 1 ...

2 Ch-15 Ventillation 2013-07-16 user2 Architect 2 Lead Architect 1

3 Ch-18 Structural Col. 2013-08-03 user2 Architect 1 Lead Architect 2

3 Ch-19 Truss Sections 2013-08-12 user1 Architect 3 Lead Architect 2

B Ch-23 Door Numbering 2013-10-01 user3 Architect 2 Lead Architect 1

...

LAYOUT_CURRENTREVISION_OPEN Work in Progress state of the current Layout (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0

Available in Layout context only. 0 - current Layout has no open Revision, 1 - current Layout has an open Revision (it is a Work in Progress Layout)

Miscellaneous

GDL Reference Guide 341

Story information
GLOB_HSTORY_ELEV elevation of the home story (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0

home story is the one the object is placed on

GLOB_HSTORY_HEIGHT height of the home story (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 3.1

home story is the one the object is placed on

GLOB_CSTORY_ELEV elevation of the current story (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 0.0

current story is the one currently shown in the Floor Plan window

GLOB_CSTORY_HEIGHT height of the current story (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 3.1

current story is the one currently shown in the Floor Plan window

GLOB_CH_STORY_DIST relative position of the current story to the home story (project dependent, do not use in parameter
script)

2D 3D UI Parameter Property Default 0.0

current story is the one currently shown in the Floor Plan window

Fly-through information
GLOB_FRAME_NR current frame number in animation (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default -1

valid only for animation, -1 for still images

Miscellaneous

GDL Reference Guide 342

GLOB_FIRST_FRAME first frame index in fly-through (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 0

valid only for animation, 0 for still images

GLOB_LAST_FRAME last frame index in fly-through (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 0

valid only for animation, 0 for still images

GLOB_EYEPOS_X current camera position (x) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default -5.0

valid only in perspective projection for both animation and still images

GLOB_EYEPOS_Y current camera position (y) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default -5.0

valid only in perspective projection for both animation and still images

GLOB_EYEPOS_Z current camera position (z) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 1.7

valid only in perspective projection for both animation and still images

GLOB_TARGPOS_X current target position (x) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 0.0

valid only in perspective projection for both animation and still images

GLOB_TARGPOS_Y current target position (y) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 0.0

valid only in perspective projection for both animation and still images

Miscellaneous

GDL Reference Guide 343

GLOB_TARGPOS_Z current target position (z) (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 1.7

valid only in perspective projection for both animation and still images

GLOB_SUN_AZIMUTH sun azimuth (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 240

according to the settings in the Sun... dialog box

GLOB_SUN_ALTITUDE sun altitude (project dependent, do not use in parameter script)

2D 3D UI Parameter Property Default 35

according to the settings in the Sun... dialog box

General element parameters
GLOB_LAYER layer of the element

name of the layer the element is assigned to

GLOB_ID user ID of the element

ID as set in the settings dialog box

GLOB_INTGUID internal GUID of the element

the internal GUID generated by the program (cannot be controlled by the user)

GLOB_ELEVATION base elevation of the element

• door/window objects: sill height, according to current settings
• slab: the elevation of the chosen reference plane of the slab, according to settings
• other elements/objects: the base elevation, according to settings

GLOB_ELEM_TYPE element type, for labels and property objects contains the type of the parent element

0 - none (individual label), 1 - object, 2 - lamp, 3 - window, 4 - door, 5 - wall, 6 - column, 7 - slab, 8 - roof, 9 - fill, 10 - mesh, 11 - zone, 12 - beam, 13 - curtain wall, 14 -
curtain wall frame, 15 - curtain wall panel, 16 - curtain wall junction, 17 - curtain wall accessory, 18 - shell, 19 - skylight, 20 - morph, 21 - stair, 22 - stair tread, 23 - stair
riser, 24 - stair structure, 25 - railing, 26 - opening, 27 - column segment, 28 - beam segment.

Miscellaneous

GDL Reference Guide 344

Object, Lamp, Door, Window, Wall End, Skylight parameters
SYMB_LINETYPE line type of the library part

applied as the default line type of the 2D symbol

SYMB_FILL fill type of the library part

applied on cut surfaces of library parts in section/elevation windows

SYMB_FILL_PEN pen of the fill of the library part

applied on cut surfaces of library parts in section/elevation windows

SYMB_FBGD_PEN pen of the background of the fill of the library part

applied on cut surfaces of library parts in section/elevation windows

SYMB_SECT_PEN pen of the library part in section

applied on contours of cut surfaces of library parts in section/elevation windows

SYMB_VIEW_PEN default pen of the library part

applied on all edges in 3D window and on edges on view in section/elevation windows

SYMB_MAT default surface attribute index of the library part

SYMB_POS_X position of the library part (x)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall)

SYMB_POS_Y position of the library part (y)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall) Note: see the section called “Doors and Windows” for orientation
of Y and Z axes

SYMB_POS_Z position of the library part (z)

relative to the project origin (excluding door, window and wall end: relative to the startpoint of the including wall) Note: see the section called “Doors and Windows” for orientation
of Y and Z axes

SYMB_ROTANGLE rotation angle of the library part

numeric rotation from within the settings dialog is performed around the current anchor point

Miscellaneous

GDL Reference Guide 345

SYMB_MIRRORED library part mirrored

0-no, 1-yes (mirroring is performed around the current anchor point.) Always 0 for wall ends, except when the origin of the local coordinate system is in a non-rectangular vertex
of a trapezoidal wall’s polygon.

Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters -
available for listing and labels only
SYMB_A_SIZE nominal length/width of library part

length of object/lamp, width of window/door (fixed parameter), width of accessory

SYMB_B_SIZE nominal width/height of library parts

width of object/lamp, height of window/door (fixed parameter), height of accessory

Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only
SYMB_Z_SIZE nominal height/length of the library part

length of accessory or if a user parameter is named in zzyzx format then it will be used for nominal height, otherwise 0

Opening parameters - available for listing and labels only
OPENING_HEIGHT length, nominal height of the opening

2D 3D UI Parameter Property Default 1

Compatibility: introduced in ARCHICAD 23.

OPENING_WIDTH length, nominal width of the opening

2D 3D UI Parameter Property Default 1

Compatibility: introduced in ARCHICAD 23.

Miscellaneous

GDL Reference Guide 346

OPENING_HEADERHEIGHT_VALUES dictionary, relative elevation of the header of the opening (or topmost point if rotated) from specific
reference levels

2D 3D UI Parameter Property Default {}

Compatibility: introduced in ARCHICAD 23.
{
 "toHomeStory": 1.5,
 "toProjectZero": 1.5,
 "toWallBottom": 1.5,
 "toWallTop": 1.5
}

OPENING_CENTERHEIGHT_VALUES dictionary, relative elevation of the center of the opening from specific reference levels

2D 3D UI Parameter Property Default {}

Compatibility: introduced in ARCHICAD 23.
{
 "toHomeStory": 1.0,
 "toProjectZero": 1.0,
 "toWallBottom": 1.0,
 "toWallTop": 2.0
}

OPENING_SILLHEIGHT_VALUES dictionary, relative elevation of the sill of the opening (or lowest point if rotated) from specific
reference levels

2D 3D UI Parameter Property Default {}

Compatibility: introduced in ARCHICAD 23.
{
 "toHomeStory": 0.5,
 "toProjectZero": 0.5,
 "toWallBottom": 0.5,
 "toWallTop": 0.5
}

Miscellaneous

GDL Reference Guide 347

Opening symbol parameters
OPENING_SYMBOL_DISPLAY integer, visibility of the opening symbol according to the Floor Plan Cut Plane (view dependent,

do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 1

Compatibility: introduced in ARCHICAD 23.
1 - visible, 2 - hidden, 3 - overhead

OPENING_SYMBOL_GEOMETRY dictionary, contains the geometry of the symbol (view dependent, do not use in parameter/property
scripts)

2D 3D UI Parameter Property Default {}

Compatibility: introduced in ARCHICAD 23.
• .boundingBox2D{}: (dictionary) bounding box definition of the opening polygon, always aligned with the opening symbol coordinate system.
• .boundingBox2D.xmin
• .boundingBox2D.xmax
• .boundingBox2D.ymin
• .boundingBox2D.ymax
• .polygon2D{}: (dictionary) projected polygon of the opening cut by the geometry of the parent element
• .polygon2D.isClosed: (boolean) always 1 in case of a polygon (0 - reserved for future developments)
• .polygon2D.contour{}: (dictionary) contains data of the polygon contour. The default polygon corresponds to the rectangle in .boundingBox2D{}
• .polygon2D.contour.edges[n]: (array) contains an embedded dictionary for each edge of the polygon
• .polygon2D.contour.edges[n].type: (integer) 0 - straight, 1 - curved (circular arc)
• .polygon2D.contour.edges[n].begPoint{}: (dictionary) an embedded dictionary for the coordinates of the beginning point of the edge
• .polygon2D.contour.edges[n].arcAngle: (angle) central angle of the edge curve, positive counter-clockwise, negative clockwise (not set for straight edges)
• .polygon2D.holes[m]: (array) contains data of inner holes, similar to .contour, only set when holes exist

Miscellaneous

GDL Reference Guide 348

OPENING_SYMBOL_GEOMETRY: {
 "boundingBox2D": {
 "xmin": 0,
 "xmax": 1,
 "ymin": 0,
 "ymax": 1
 },
 "polygon2D": {
 "isClosed": 1,
 "contour": {
 "edges": [
 {
 "type": 1,
 "begPoint": {
 "x": 1,
 "y": 0.5
 },
 "arcAngle": 90
 },
 {
 "type": 1,
 "begPoint": {
 "x": 0.5,
 "y": 1
 },
 "arcAngle": 90
 },
 {
 "type": 1,
 "begPoint": {
 "x": 0,
 "y": 0.5
 },
 "arcAngle": 90
 },

Miscellaneous

GDL Reference Guide 349

 {
 "type": 1,
 "begPoint": {
 "x": 0.5,
 "y": 0
 },
 "arcAngle": 90
 }
]
 },
 "holes": {
 "edges": [
 {
 "type": 0,
 "begPoint": {
 "x": 0.4,
 "y": 0.4
 },
 },
 {
 "type": 0,
 "begPoint": {
 "x": 0.4,
 "y": 0.6
 },
 },
 {
 "type": 0,
 "begPoint": {
 "x": 0.6,
 "y": 0.6
 },
 },

Miscellaneous

GDL Reference Guide 350

 {
 "type": 0,
 "begPoint": {
 "x": 0.6,
 "y": 0.4
 },
 }
]
 }
 }

Window, Door and Wall End parameters
WIDO_REVEAL_ON window/door built-in reveal is on

0-reveal is off, 1-reveal is on

WIDO_SILL sill depth of the window/door - sometimes referred to as reveal depth

for curved walls: in radial direction at nominal sized opening corner

WIDO_SILL_HEIGHT window/door nominal sill height

WIDO_RSIDE_SILL_HEIGHT window/door sill height on the reveal side

WIDO_OPRSIDE_SILL_HEIGHT window/door sill height on the side opposite to the reveal side

WIDO_RIGHT_JAMB window/door built-in jamb on the right side

WIDO_LEFT_JAMB window/door built-in jamb on the left side

WIDO_THRES_DEPTH window/door built-in sill/threshold depth

WIDO_HEAD_DEPTH window/door built-in head depth

WIDO_HEAD_HEIGHT window/door nominal head height

WIDO_RSIDE_HEAD_HEIGHT window/door head height on the reveal side

WIDO_OPRSIDE_HEAD_HEIGHT window/door head height on the side opposite to the reveal side

WIDO_REVEAL_SIDE reveal side is opposite to the opening side

1-yes, 0-no - when placing an element, the default value is 0 for windows, 1 for doors

Miscellaneous

GDL Reference Guide 351

WIDO_FRAME_THICKNESS frame thickness of window/door

when flipping doors/windows, they will be mirrored then relocated automatically by this value

WIDO_POSITION offset of the door/window

angle or distance between the axis of the opening or wall end and the normal vector at the wall’s starting point

WIDO_ORIENTATION window/door opening orientation

left/right - it will work fine only if the door/window was created according to local standards

WIDO_MARKER_TXT window/door marker text

WIDO_SUBFL_THICKNESS subfloor thickness (for sill height correction)

WIDO_PREFIX window/door sill height prefix

WIDO_CUSTOM_MARKER window/door custom marker switch

1-parameters can be used in the 2D script while the automatic dimension is not present

WIDO_ORIG_DIST distance of the local origin from the center of curvature of the wall

distance of the local origin from the centerpoint of the curved wall, 0 for straight walls. Negative for wall ends at the ending point of the curved wall.

WIDO_PWALL_INSET parapet wall inset

Window, Door parameters - available for listing and labels only
WIDO_RSIDE_WIDTH window/door opening width on the reveal side

WIDO_OPRSIDE_WIDTH window/door opening width on the side opposite to the reveal side

WIDO_RSIDE_HEIGHT window/door opening height on the reveal side

WIDO_OPRSIDE_HEIGHT window/door opening height on the side opposite to the reveal side

WIDO_RSIDE_SURF window/door opening surface area on the reveal side

WIDO_OPRSIDE_SURF window/door opening surface area on the side opposite to the reveal side

WIDO_N_RSIDE_WIDTH nominal window/door opening width on the reveal side

WIDO_N_OPRSIDE_WIDTH nominal window/door opening width on the side opposite to the reveal side

WIDO_N_RSIDE_HEIGHT nominal window/door opening height on the reveal side

Miscellaneous

GDL Reference Guide 352

WIDO_N_OPRSIDE_HEIGHT nominal window/door opening height on the side opposite to the reveal side

WIDO_N_RSIDE_SURF nominal window/door opening surface on the reveal side

WIDO_N_OPRSIDE_SURF nominal window/door opening surface on the side opposite to the reveal side

WIDO_VOLUME window/door opening volume

WIDO_GROSS_SURFACE window/door opening nominal surface area

WIDO_GROSS_VOLUME window/door opening nominal volume

Lamp parameters - available for listing and labels only
LIGHT_ON light is on

0-light is off, 1-light is on

LIGHT_RED red component of the light color

LIGHT_GREEN green component of the light color

LIGHT_BLUE blue component of the light color

LIGHT_INTENSITY light intensity

Marker parameters (Detail, Worksheet and Change Markers)
MARKER_HEAD_ROT_MODE integer type global, set according to function "Marker Angle: Fixed Angle to Screen/Fixed Angle

to Model" on Marker panel of the Settings Dialog

2D 3D UI Parameter Property Default 1

can be used to react to marker head rotation settings of ARCHICAD on GDL symbol side
1 - Fixed Angle to Screen, 2 - Fixed Angle to Model
Compatibility: introduced in ARCHICAD 22.

Miscellaneous

GDL Reference Guide 353

MARKER_HEAD_ANGLE angle type global, set by the user on Marker panel of the Settings Dialog

2D 3D UI Parameter Property Default 0

marker head symbol rotation data for GDL symbol part of the marker
Compatibility: introduced in ARCHICAD 22.
In Detail/Worksheet marker objects, SYMB_ROTANGLE value stays compatible with this new angle data:
• "Fixed Angle to Screen" mode: 1 - SYMB_ROTANGLE is the opposite of view rotation angle
• "Fixed Angle to Model" mode: 2 - SYMB_ROTANGLE equals MARKER_HEAD_ANGLE
In Change marker objects, SYMB_ROTANGLE value stays 0 as before in all cases.

Label parameters
LABEL_POSITION position of the label

2D 3D UI Parameter Property Default 0

array[3][2] containing the coordinates of the 3 points defining the label pointer and the starting position of the label GDL symbol.
Compatibility: parameter and property script restrictions are introduced in ARCHICAD 22.
View-dependent value in case of "Fixed Angle" ON. Project-dependent in case "Label Orientation" is set to "Parallel" or "Perpendicular", and the parent element is moved, thus
changing the value of the variable while not running the parameter script of the label itself (can not be stored as parameter).

LABEL_ASSOC_ELEM_ORIENTATION orientation of the associated element

2D 3D UI Parameter Property Default 0

• straight elements: the direction of the reference line
• curved elements: the direction of the chord of the arc
• point-like elements: the rotation angle of the element
Compatibility: parameter and property script restrictions are introduced in ARCHICAD 22.
Project-dependent: the parent element can be moved, thus changing the value of the variable while not running the parameter script of the label itself (can not be stored as parameter).

Miscellaneous

GDL Reference Guide 354

LABEL_ROTANGLE absolute rotation angle data for GDL symbol type labels

2D 3D UI Parameter Property Default 0

The angle is calculated according to Label Orientation, Fixed Angle, and readability settings.
Compatibility: parameter and property script restrictions are introduced in ARCHICAD 22.
View-dependent value in case of "Fixed Angle" ON. Project-dependent in case "Label Orientation" is set to "Parallel" or "Perpendicular": the parent element can be moved, thus
changing the value of the variable.

LABEL_ARROWHEAD_PEN pen of the arrowhead

LABEL_HAS_POINTER Boolean

1 - "Add/Remove Pointer" is checked on "Label Settings/Pointer" panel, 0 otherwise.
Compatibility: introduced in ARCHICAD 22. The similar, reverse-working global variable "LABEL_CUSTOM_ARROW" is considered deprecated since ARCHICAD 22.

Wall parameters - available for Doors/Windows, listing and labels
WALL_ID user ID of the wall

WALL_INTGUID internal GUID of the wall

the internal GUID generated by the program (cannot be controlled by the user)

WALL_RESOL 3D resolution of a curved wall

effective in 3D only

WALL_THICKNESS thickness of the wall

in case of inclined walls: the wall thickness at the opening axis (local z axis)

WALL_START_THICKNESS Start thickness of the wall

WALL_END_THICKNESS End thickness of the wall

WALL_INCL inclination of the wall surfaces

the angle between the two inclined wall surfaces - 0 for common straight walls

Miscellaneous

GDL Reference Guide 355

WALL_FLIPPED boolean value set according to "Reference Line Location: Flip Wall on Reference Line" option of
the wall

2D 3D UI Parameter Property Default 0

information about the flipped state of the current wall
0 - default wall position, 1 - wall is flipped on reference line
Compatibility: introduced in ARCHICAD 22.

WALL_HEIGHT height of the wall

WALL_MAT_A surface attribute index of the wall on the side opposite to the opening side

WALL_MAT_B surface attribute index of the wall on the opening side

this can vary from opening to opening placed in the same wall

WALL_MAT_EDGE surface attribute index of the edges of the wall

WALL_LINETYPE line type of the wall

applied on the contours only in the floor plan window

WALL_FILL fill type of the wall

fill index, first skin of a composite structure

WALL_FILL_PEN pen of the wall fill

WALL_COMPS_NAME name of the composite or complex structure of the wall

the name of the profile attribute for complex wall, the name of the composite attribute for composite walls, empty string otherwise.

WALL_BMAT_NAME name of the building material of the wall

building material name of the wall, empty string for composite or complex walls.

WALL_BMAT index of the building material of the wall

Compatibility: introduced in ARCHICAD 21.
building material index of the wall, 0 for composite or complex walls.

WALL_SKINS_NUMBER number of composite or complex wall skins

range of 1to 127, 0 if single fill applied

Miscellaneous

GDL Reference Guide 356

WALL_SKINS_PARAMS parameters of the composite or complex wall skins

array with 19 columns with arbitrary number of rows:
• [1] fill
• [2] thickness
• [3] (old contour pen)
• [4] pen of fill
• [5] pen of fill background
• [6] core status
• [7] upper line pen
• [8] upper line type
• [9] lower line pen
• [10] lower line type
• [11] end face pen
• [12] fill orientation
• [13] skin type
• [14] end face line type
• [15] finish skin status
• [16] oriented fill status
• [17] trapezoid/double slanted status
• [18] building material index
• [19] skin edge surface index (considering wall edge surface override). Compatibility: introduced in ARCHICAD 22.
core status: 0 - not part, 1 - part, 3 - last core skin.
fill orientation: 0 - global, 1 - local.
skin type: 0 - cut, 1 - below cutplane, 2 - above cutplane (all skin types are 0 for simple walls).
trapezoid/double slanted: 0 - this skin has parallel faces in all circumstances, 1 - this skin might have non-parallel faces to adjust for the width difference of trapezoid walls or double
slanted walls. Even if the wall faces are parallel, this flag can be turned on.
finish skin status: 0 - not finish skin, 1 - finish skin.
oriented fill status: 0 - global or local fill orientation as set in the "fill orientation" column, 1 - fill orientation and size match with the wall skin direction and thickness.
For complex walls this variable contains only the data of the skins that are cut on the floor plan (2D - regarding floor plan cut height), or cut at D/W sill / wall end bottom height (3D).

WALL_SKINS_BMAT_NAMES building material names of the composite or complex wall skins

array with 1 column: building material name of the skin and with arbitrary number of rows.
For D/W and wall ends in the 3D window contains the data of the skins actually cut by the D/W or wall end.

Miscellaneous

GDL Reference Guide 357

WALL_SECT_PEN pen of the contours of the wall cut surfaces

applied on contours of cut surfaces both in floor plan and section/elevation windows

WALL_VIEW_PEN pen of the contours of the wall on view

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation window

WALL_FBGD_PEN pen of the background of the fill of the wall

WALL_DIRECTION direction of the wall

straight walls: the direction of the reference line, curved walls: the direction of the chord of the arc

WALL_POSITION absolute coordinates of the wall

array with 3 columns: x, y, z, which means the position of the wall’s starting point relative to the project origin

WALL_TEXTURE_WRAP texture wrapping data of the wall to be used in VERT and COOR{2}, or COOR{3} commands.
The wall texture coordinates are transformed to match the local coordinate system of the wall-
connected object (no additional transformations needed).

array with 14 rows:
• [1]: wrapping_method
• [2]: wrap_flags
• [3]-[4]-[5]: origin_X, origin_Y, origin_Z (nodes of vert 1)
• [6]-[7]-[8]: endOfX_X, endOfX_Y, endOfX_Z (nodes of vert 2)
• [9]-[10]-[11]: endOfY_X, endOfY_Y, endOfY_Z (nodes of vert 3)
• [12]-[13]-[14]: endOfZ_X, endOfZ_Y, endOfZ_Z (nodes of vert 4)

Wall parameters - available for listing and labels only
WALL_LENGTH_A length of the wall on the reference line side

WALL_LENGTH_B length of the wall on the side opposite to the reference line

WALL_LENGTH_A_CON conditional wall length on the reference line side

WALL_LENGTH_B_CON conditional wall length on the side opposite to the reference line

WALL_CENTER_LENGTH length of the wall at the center

WALL_AREA area of the wall

WALL_PERIMETER perimeter of the wall

Miscellaneous

GDL Reference Guide 358

WALL_SURFACE_A surface area of the wall on the reference line side

WALL_SURFACE_B surface area of the wall on the side opposite to the reference line

WALL_SURFACE_A_CON conditional wall surface area on the reference line side

WALL_SURFACE_B_CON conditional wall surface area on the side opposite to the reference line

WALL_GROSS_SURFACE_A gross surface area of the wall on the reference line side

WALL_GROSS_SURFACE_B gross surface area of the wall on the side opposite to the reference line

WALL_EDGE_SURF surface area of the edge of the wall

WALL_VOLUME volume of the wall

WALL_VOLUME_CON conditional volume of the wall

WALL_GROSS_VOLUME gross volume of the wall

WALL_VOLUME_A wall skin volume on the reference line side

WALL_VOLUME_A_CON conditional wall skin volume on the reference line side

WALL_VOLUME_B wall skin volume on the side opposite to the reference line

WALL_VOLUME_B_CON conditional wall skin volume on the side opposite to the reference line

WALL_DOORS_NR number of doors in the wall

WALL_WINDS_NR number of windows in the wall

WALL_HOLES_NR number of empty openings

WALL_DOORS_SURF surface area of doors in the wall

WALL_WINDS_SURF surface area of windows in the wall

WALL_HOLES_SURF surface area of empty openings in the wall

WALL_HOLES_SURF_A analytic surface area of openings on the reference line side

WALL_HOLES_SURF_B analytic surface area of openings on the opposite side

WALL_HOLES_VOLUME analytic volume of openings in the wall

WALL_WINDS_WID combined width of the windows in the wall

WALL_DOORS_WID combined width of the doors in the wall

Miscellaneous

GDL Reference Guide 359

WALL_COLUMNS_NR number of columns in the wall

WALL_CROSSSECTION_TYPE cross-section type of the wall

0 - complex profiled, 1 - rectangular, 2 - slanted, 3 - double slanted

WALL_MIN_HEIGHT minimum height of the wall

WALL_MAX_HEIGHT maximum height of the wall

WALL_SKIN_MIN_HEIGHT_A minimum height of the wall skin on the reference line side

WALL_SKIN_MAX_HEIGHT_A maximum height of the wall skin on the reference line side

WALL_SKIN_MIN_HEIGHT_B minimum height of the wall skin on the reference line side

WALL_SKIN_MAX_HEIGHT_B maximum height of the wall skin on the side opposite to the reference line

WALL_SKIN_THICKNESS_A wall skin thickness on the reference line side

WALL_SKIN_THICKNESS_B wall skin thickness on the side opposite to the reference line

WALL_INSU_THICKNESS wall insulation skin thickness

WALL_AIR_THICKNESS wall air skin thickness

Column parameters - available for listing and labels only
Compatibility: From ARCHICAD 23, the Column element is a collection of Column Segments. GLOB_ELEM_TYPE has a new value for
Column segments: 27, the value of the Column element remains 6.
The availability of each global variable (whether it contains meaningful data) is shown in a table with icons, with the value of the
GLOB_ELEM_TYPE global variable in parentheses.

COLU_SEGMENT_INDEX index of Column Segment in COLU_SEGMENT_INFO.segments[] array

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Compatibility: introduced in ARCHICAD 23.

Miscellaneous

GDL Reference Guide 360

COLU_SEGMENT_INFO dictionary, contains all the Column Segments' geometric settings which can determine the
availability of other global variables. Not available in parameter and property scripts.

When placed on a Column Segment, COLU_SEGMENT_INFO.segments[COLU_SEGMENT_INDEX] contains the information about the labeled segment.
• .segments[n].tapered: (integer): 0 - uniform cross-section, 1 - tapered cross-section
• .segments[n].crossSection{}: (dictionary) cross-section data of segment
• .segments[n].crossSection.type: (integer) cross-section type: 1 - rectangular, 2 - circular, 3 - complex profile
• .segments[n].crossSection.startWidth: (length) bounding cross-section width of the start of the segment. The direction of the segment is defined by its

reference line.
• .segments[n].crossSection.startHeight: (length) bounding cross-section height of the start of the segment. The direction of the segment is defined by

its reference line.
• .segments[n].crossSection.endWidth: (length) bounding cross-section width of the end of the segment. The direction of the segment is defined by its reference

line.
• .segments[n].crossSection.endHeight: (length) bounding cross-section height of the end of the segment. The direction of the segment is defined by its

reference line.

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Compatibility: introduced in ARCHICAD 23.

COLU_CORE core/veneer properties (0 in case of tapered column segment)

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

serves compatibility: it is only effective in the properties script of .CPS (Column.Properties) files

COLU_HEIGHT height of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_MIN_HEIGHT Minimum height of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_MAX_HEIGHT Maximum height of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 361

COLU_VENEER_WIDTH thickness of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_X Width of the core (0 in case of tapered column segment)

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_Y Depth of the core (0 in case of tapered column segment)

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_DIM1 1st dimension of the column (0 in case of tapered column segment) - only for labels

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_DIM2 2nd dimension of the column (0 in case of tapered column segment) - only for labels

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_MAT surface attribute index of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Wall wrapping will replace column surface with the surfaces of the connecting walls

COLU_LINETYPE line type of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

applied on the contours only in the floor plan window

COLU_CORE_FILL fill of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_BMAT_NAME building material name of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 362

COLU_CORE_BMAT building material index of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Compatibility: introduced in ARCHICAD 21.

COLU_VENEER_FILL fill of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_BMAT_NAME building material name of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_BMAT building material index of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Compatibility: introduced in ARCHICAD 21.

COLU_SECT_PEN pen of the contours of the column cut surfaces

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

applied on contours of cut surfaces in both floor plan and section/elevation windows

COLU_VIEW_PEN pen of the column on view

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows

COLU_CORE_FILL_PEN pen of the fill of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_FBGD_PEN pen of the background of the fill of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 363

COLU_VENEER_FILL_PEN pen of the fill of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_FBGD_PEN pen of the background of the fill of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_PERIMETER Perimeter of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_AREA Area of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VOLUME Volume of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_GROSS_VOLUME Gross volume of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_SURF surface area of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_GROSS_SURF Gross surface area of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_VOL volume of the column core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_GROSS_VOL Gross volume of the core

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 364

COLU_VENEER_SURF surface area of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_GROSS_SURF Gross surface area of the veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_VOL volume of the column veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_GROSS_VOL Gross volume of the veneer

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_TOP_SURF Surface area of the core top

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_BOT_SURF Surface area of the core bottom

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_TOP_SURF Surface area of the veneer top

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_BOT_SURF Surface area of the veneer bottom

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_CORE_GROSS_TOPBOT_SURF Gross surface area of the core top and bottom

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

COLU_VENEER_GROSS_TOPBOT_SURF Gross surface area of the veneer top and bottom

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 365

COLU_PROFILE_NAME name of the profile of the column, if complex

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Beam parameters - available for listing and labels only
Compatibility: From ARCHICAD 23, the Beam element is a collection of Beam Segments. GLOB_ELEM_TYPE has a new value for Beam
segments: 28, the value of the Beam element remains 12.
The availability of each global variable (whether it contains meaningful data) is shown in a table with icons, with the value of the
GLOB_ELEM_TYPE global variable in parentheses.

BEAM_SEGMENT_INDEX index of Beam Segment in BEAM_SEGMENT_INFO.segments[] array

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: introduced in ARCHICAD 23.

Miscellaneous

GDL Reference Guide 366

BEAM_SEGMENT_INFO dictionary, contains all the Beam Segments' geometric settings which can determine the availability
of other global variables, and further Beam Segment geometric data. Not available in parameter
and property scripts.

When placed on a Beam Segment, BEAM_SEGMENT_INFO.segments[BEAM_SEGMENT_INDEX] contains the information about the labeled segment.
• .segments[n].curvature: axis curvature (integer): 0 - straight, 1 - horizontally curved, 2 - vertically curved
• .segments[n].tapered: (integer): 0 - uniform cross-section, 1 - tapered cross-section
• .segments[n].refLineLength: 3D length of the beam segment reference line (length)
• .segments[n].crossSection{}: (dictionary) cross-section data of segment
• .segments[n].crossSection.type: (integer) cross-section type: 1 - rectangular, 2 - circular, 3 - complex profile
• .segments[n].crossSection.startWidth: (length) bounding cross-section width of the start of the segment. The direction of the segment is defined by its

reference line.
• .segments[n].crossSection.startHeight: (length) bounding cross-section height of the start of the segment. The direction of the segment is defined by

its reference line.
• .segments[n].crossSection.endWidth: (length) bounding cross-section width of the end of the segment. The direction of the segment is defined by its reference

line.
• .segments[n].crossSection.endHeight: (length) bounding cross-section height of the end of the segment. The direction of the segment is defined by its

reference line.

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: introduced in ARCHICAD 23.

BEAM_THICKNESS thickness of the beam (0 in case of tapered beam segment)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_HEIGHT height of the beam (0 in case of tapered beam segment)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_REFLINE_OFFSET offset of the reference line relative to the axes of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 367

BEAM_ELEVATION_TOP calculated elevation of the topmost point of the beam geometry

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: introduced in ARCHICAD 22.

BEAM_ELEVATION_BOTTOM calculated elevation of the lowest point of the beam geometry

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: introduced in ARCHICAD 22.

BEAM_PRIORITY 3D intersection priority index number

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_MAT_RIGHT surface attribute index of the beam on the right side of the reference line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_MAT_LEFT surface attribute index of the beam on the left side of the reference line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_MAT_TOP surface attribute index of the beam on the top

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_MAT_BOTTOM surface attribute index of the beam at the bottom

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_MAT_END surface attribute index of the beam at both ends

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_OUTLINE_LINETYPE line type of the beam outline

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 368

BEAM_AXES_LINETYPE line type of the beam axes

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_FILL fill type of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_BMAT_NAME building material name of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_BMAT building material index of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: introduced in ARCHICAD 21.

BEAM_FILL_PEN pen of the beam fill

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_SECT_PEN pen of the contours of the beam cut surfaces

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_FBGD_PEN pen of the background of the fill of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_DIRECTION the direction of the beam reference line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_POSITION absolute coordinates of the beam axis starting point

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 369

BEAM_LENGTH_RIGHT length of the beam on the right side of the reference line (0 in case of tapered or vertically curved
beam)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: deprecated for listing in ARCHICAD 23.

BEAM_LENGTH_LEFT length of the beam on the left side of the reference line (0 in case of tapered or vertically curved
beam)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Compatibility: deprecated for listing in ARCHICAD 23.

BEAM_RIGHT_SURF surface area of the beam on the right side of the reference line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_LEFT_SURF surface area of the beam on the left side of the reference line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_TOP_SURF surface area of the top of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_BOTTOM_SURF surface area of the bottom of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_END_SURF surface area of both ends of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_VOLUME volume of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 370

BEAM_VOLUME_CON conditional volume of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_HOLES_NR number of holes in the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_HOLES_SURF total surface area of holes in the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_HOLE_EDGE_SURF total surface area of hole edges in the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_HOLES_VOLUME total volume of holes in the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

BEAM_PROFILE_NAME name of the profile of the beam, if complex

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Slab parameters - available for listing and labels only
SLAB_THICKNESS thickness of the slab

SLAB_ELEVATION_TOP top elevation of the slab

SLAB_ELEVATION_BOTTOM bottom elevation of the slab

SLAB_MAT_TOP surface attribute index of the top surface of the slab

SLAB_MAT_EDGE surface attribute index of the edges of the slab

SLAB_MAT_BOTT surface attribute index of the bottom surface of the slab

SLAB_LINETYPE line type of the slab

SLAB_FILL fill of the slab

fill index - its value is negative in case of a composite structure

Miscellaneous

GDL Reference Guide 371

SLAB_FILL_PEN pen of the fill of the slab

SLAB_FBGD_PEN pen of the background of the fill of the slab

SLAB_COMPS_NAME name of the composite structure of the slab

SLAB_BMAT_NAME building material name of the slab, empty string for composite slabs

SLAB_BMAT building material index of the slab, 0 for composite slabs

Compatibility: introduced in ARCHICAD 21.

SLAB_SKINS_NUMBER number of composite slab skins

range of 1 to 8, 0 if single fill applied

SLAB_SKINS_PARAMS parameters of the composite slab skins

array with 18 columns with arbitrary number of rows:
• [1] fill
• [2] thickness
• [3] (old contour pen)
• [4] pen of fill
• [5] pen of fill background
• [6] core status
• [7] upper line pen
• [8] upper line type
• [9] lower line pen
• [10] lower line type
• [11] end face pen
• [12] fill orientation
• [13] skin type
• [14] end face line type
• [15] finish skin status
• [16] oriented fill status
• [17] core skin status (if no core skin exists, the thickest skin)
• [18] building material index.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ARCHICAD always 0 - cut, it can be used as in walls
later; finish skin status: 0 not finish skin, 1: finish skin

Miscellaneous

GDL Reference Guide 372

SLAB_SKINS_BMAT_NAMES building material names of the composite slab skins

array with 1 column: building material name of the skin and with arbitrary number of rows.

SLAB_SECT_PEN pen of the contours of the slab in section

applied on contours of cut surfaces in both floor plan and section/elevation windows

SLAB_VIEW_PEN pen of the slab

applied on all edges in 3D window and on visible edges in section/elevation windows

SLAB_TOP_SURF top surface area of the slab

not reduced by the surface area of holes

SLAB_GROSS_TOP_SURF gross surface area of the slab top without hole

reduced by the surface area of holes

SLAB_TOP_SURF_CON conditional top surface area of the slab

reduced by the surface area of holes, which are bigger than the given value

SLAB_BOT_SURF bottom surface area of the slab without hole

not reduced by the surface area of holes

SLAB_GROSS_BOT_SURF gross surface area of the slab bottom

reduced by the surface area of holes

SLAB_BOT_SURF_CON conditional bottom surface area of the slab

reduced by the surface area of holes, which are bigger than the given value

SLAB_EDGE_SURF surface area of the edges of the slab

not reduced by the surface area of holes

SLAB_GROSS_EDGE_SURF gross surface area of the slab edges without hole

reduced by the surface area of holes

SLAB_PERIMETER perimeter of the slab

SLAB_VOLUME volume of the slab

not reduced by the volume of holes

Miscellaneous

GDL Reference Guide 373

SLAB_GROSS_VOLUME gross volume of the slab without hole

reduced by the volume of holes

SLAB_VOLUME_CON conditional volume of the slab

reduced by the volume of holes, which are bigger than the given value

SLAB_SEGMENTS_NR number of segments of the slab

SLAB_HOLES_NR number of holes in the slab

SLAB_HOLES_AREA area of holes in the slab

SLAB_HOLES_PRM perimeter of holes in the slab

SLAB_GROSS_TOP_SURF_WITH_HOLES gross surface area of the slab top

SLAB_GROSS_BOT_SURF_WITH_HOLES gross surface area of the slab bottom

SLAB_GROSS_EDGE_SURF_WITH_HOLES gross surface area of the slab edges

SLAB_GROSS_VOLUME_WITH_HOLES gross volume of the slab

Stair component parameters

General stair variables - available for listing and labels
Compatibility: introduced in ARCHICAD 21.
STAIR_AREA projected 2D area of the stair

2D 3D UI Parameter Property Default 0

STAIR_VOLUME area of the stair including all 3D parts

2D 3D UI Parameter Property Default 0

STAIR_HEIGHT difference between maximum and minimum of Z coordinates

2D 3D UI Parameter Property Default 0

STAIR_WALKLINE_LENGTH projected 2D length of the stair's walking line

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 374

STAIR_DEFAULT_WIDTH default width of stair (as set in the Stair Default Settings/Geometry and Positioning panel)

2D 3D UI Parameter Property Default 0

STAIR_DEFAULT_GOING_DEPTH default depth of going (as set in the Stair Default Settings/Geometry and Positioning panel)

2D 3D UI Parameter Property Default 0

STAIR_DEFAULT_RISER_HEIGHT default width of riser (as set in the Stair Default Settings/Geometry and Positioning panel)

2D 3D UI Parameter Property Default 0

STAIR_DEFAULT_TREAD_THICKNESS default tread thickness of stair (as set in the Stair Default Settings/Geometry and Positioning panel)

2D 3D UI Parameter Property Default 0

STAIR_NR_OF_TREADS_IN_FLIGHTS integer array with one dimension ([n]) number of treads in each flight of the stair (n = number
of flights)

2D 3D UI Parameter Property Default 0

STAIR_NR_OF_RISERS_IN_FLIGHTS integer array with one dimension ([n]) number of risers in each flight of the stair (n = number of
flights)

2D 3D UI Parameter Property Default 0

STAIR_NR_OF_RISERS number of risers regarding the whole stair

2D 3D UI Parameter Property Default 0

STAIR_NR_OF_TREADS number of treads regarding the whole stair

2D 3D UI Parameter Property Default 0

STAIR_LANDING_NUMBER number of landing sections regarding the whole stair

2D 3D UI Parameter Property Default 0

STAIR_STAIR_GRADIENT stair inclination: the angle of the riser/going ratio in radian

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 375

STAIR_RULE_LIMITS length/angle array with two dimensions ([6][2]), collection of minimum and maximum values set in
Stair Default Settings/Rules and Standards/Treads and Risers panel

2D 3D UI Parameter Property Default [0]

Project Preferences setting of the visibility of these values does not affect the variable.
• [1][1] - [1][2]: Riser height (R) minimum and maximum value
• [2][1] - [2][2]: Going (G) minimum and maximum value
• [3][1] - [3][2]: 2 Riser + 1 Going (2*R + G) minimum and maximum value
• [4][1] - [4][2]: Riser / Going ratio (R / G) minimum and maximum value
• [5][1] - [5][2]: Riser + Going (R + G) minimum and maximum value
• [6][1] - [6][2]: Stair pitch minimum and maximum value

STAIR_RULE_FLAGS boolean array with two dimensions ([6][2]), enable/disable status collection of limits in accordance
with STAIR_RULE_LIMITS, set in Stair Default Settings/Rules and Standards/Treads and Risers
panel

2D 3D UI Parameter Property Default [0]

Value indexes are parallel to STAIR_RULE_LIMITS. Possible values:
• 0 - limit option of the same index in STAIR_RULE_LIMITS is currently not used
• 1 - limit option of the same index in STAIR_RULE_LIMITS is currently in use

General tread variables - available for listing and labels
Compatibility: introduced in ARCHICAD 21.

TREAD_STEP_INDEX step index of the selected (current) tread

2D 3D UI Parameter Property Default 0

TREAD_GOING going length of the selected (current) tread

2D 3D UI Parameter Property Default 0

TREAD_ELEVATION elevation to Project Zero of the selected (current) tread

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 376

TREAD_AREA projected 2D area of the selected (current) tread

2D 3D UI Parameter Property Default 0

TREAD_FRONT_AREA front surface area of the selected (current) tread

2D 3D UI Parameter Property Default 0

TREAD_VOLUME volume of the selected (current) tread

2D 3D UI Parameter Property Default 0

TREAD_BMATS array with one dimension ([n]), building materials of the selected (current) tread (n = number of
building materials)

2D 3D UI Parameter Property Default 0

General riser variables - available for listing and labels
Compatibility: introduced in ARCHICAD 21.

RISER_STEP_INDEX step index of the selected (current) riser

2D 3D UI Parameter Property Default 0

RISER_WIDTH polyline length of the selected (current) riser

2D 3D UI Parameter Property Default 0

RISER_FRONT_AREA front surface area of the selected (current) riser

2D 3D UI Parameter Property Default 0

RISER_VOLUME volume of the selected (current) riser

2D 3D UI Parameter Property Default 0

RISER_BMATS array with one dimension ([n]), building materials of the selected (current) riser (n = number of
building materials)

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 377

Stair structure variables - available for listing and labels
Compatibility: introduced in ARCHICAD 21.

STRUCTURE_WIDTH width of the selected (current) structure component

2D 3D UI Parameter Property Default 0

STRUCTURE_HEIGHT height of the selected (current) structure component (difference of min. and max. z)

2D 3D UI Parameter Property Default 0

STRUCTURE_3DLENGTH full 3D length of the selected (current) structure component

2D 3D UI Parameter Property Default 0

STRUCTURE_VOLUME volume of the selected (current) structure component

2D 3D UI Parameter Property Default 0

STRUCTURE_THICKNESS thickness of the selected (current) structure component

2D 3D UI Parameter Property Default 0

Stair Model View Options variables
Related settings are available on the Model View Options/Stair and Railing options dialog.
Compatibility: introduced in ARCHICAD 21.

GLOB_MVO_STAIR_FLOOR_PLAN_OPT Stair MVO Floor Plan option: 0 - Floor Plan, 1 - Reflected Ceiling Plan

2D 3D UI Parameter Property Default 1

Miscellaneous

GDL Reference Guide 378

GLOB_MVO_STAIR_FLOOR_PLAN_COMP Stair MVO Component bitset

2D 3D UI Parameter Property Default 1

mask: returns information about the visible stair components of the floor plan
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.
j1: walking line
j2: numbering
j3: up/down text
j4: description
j5: tread accessories
j6: structure - beam
j7: structure - stringers
j8: structure - cantilevered
j9: structure - monolithic Compatibility: introduced in ARCHICAD 22.

GLOB_MVO_RAILING_PLAN_COMP Railing MVO Component bitset

2D 3D UI Parameter Property Default 127

mask: returns information about the visible stair components of the floor plan
mask = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j1: posts
j2: toprail
j3: handrails
j4: rails
j5: inner posts
j6: balusters
j7: panels

Stair 2D variables - available for floor plan representation only
Compatibility: introduced in ARCHICAD 21.

Miscellaneous

GDL Reference Guide 379

Stair grid variables
STAIR2D_FULL_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of tread polygon nodes

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - coordinate x of polygon node measured from stair origin
• [n][2] - coordinate y of polygon node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_FULL_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of the tread polygons, in accordance with
STAIR2D_FULL_TPOLYGON_GEOM

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - index of tread
• [n][2] - edge type starting from node (0 - leading, 1 - trailing, 2 - left, 3 - right, 4 - breakline, -1 - closing)
• [n][3] - visibility of the edge starting from the node (1 - visible, 0 - omitted)
• [n][4] - type of tread (0 - flight, 1 - landing)

STAIR2D_FULL_RPOLYLINE_GEOM array with two dimensions ([n][3]), data triplets of riser polyline nodes

2D 3D UI Parameter Property Default [0]

n = number of risers * 2 nodes for each tread (in general):
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_FULL_RPOLYLINE_FLAGS array with two dimensions ([n][1]), additional data of the riser polylines, in accordance with
STAIR2D_FULL_RPOLYLINE_GEOM

2D 3D UI Parameter Property Default [0]

n = number of risers * 2 nodes for each tread (in general):
• [n][1] - index of riser

Miscellaneous

GDL Reference Guide 380

STAIR2D_FULL_BOUNDARY_GEOM array with two dimensions ([n][3]), data triplets of stair boundary polygon nodes

2D 3D UI Parameter Property Default [0]

n = number of boundary nodes (5 in general):
• [n][1] - coordinate x of polygon node measured from stair origin
• [n][2] - coordinate y of polygon node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

The following globals are used to define the parts of the stair represented below the first breakmark.

STAIR2D_LOWER_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of tread polygon nodes of lower part, similar to
STAIR2D_FULL_TPOLYGON_GEOM

2D 3D UI Parameter Property Default [0]

STAIR2D_LOWER_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of tread polygon nodes of lower part, similar to
STAIR2D_FULL_TPOLYGON_FLAGS

2D 3D UI Parameter Property Default [0]

STAIR2D_LOWER_RPOLYLINE_GEOM array with two dimensions ([n][3]), data triplets of riser polyline nodes of lower part, similar to
STAIR2D_FULL_RPOLYLINE_GEOM

2D 3D UI Parameter Property Default [0]

STAIR2D_LOWER_RPOLYLINE_FLAGS array with two dimensions ([n][1]), additional data of riser polyline nodes of lower part, similar to
STAIR2D_FULL_RPOLYLINE_FLAGS

2D 3D UI Parameter Property Default [0]

STAIR2D_LOWER_BOUNDARY_GEOM array with two dimensions ([n][3]), data triplets of stair boundary polygon nodes of lower part,
similar to STAIR2D_FULL_BOUNDARY_GEOM

2D 3D UI Parameter Property Default [0]

The following globals are used to define the parts of the stair represented between two breakmarks.

STAIR2D_MIDDLE_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of tread polygon nodes of middle part, similar to
STAIR2D_FULL_TPOLYGON_GEOM

2D 3D UI Parameter Property Default [0]

Miscellaneous

GDL Reference Guide 381

STAIR2D_MIDDLE_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of tread polygon nodes of middle part, similar
to STAIR2D_FULL_TPOLYGON_FLAGS

2D 3D UI Parameter Property Default [0]

STAIR2D_MIDDLE_RPOLYLINE_GEOM array with two dimensions ([n][3]), data triplets of riser polyline nodes of middle part, similar to
STAIR2D_FULL_RPOLYLINE_GEOM

2D 3D UI Parameter Property Default [0]

STAIR2D_MIDDLE_RPOLYLINE_FLAGS array with two dimensions ([n][1]), additional data of riser polyline nodes of middle part, similar to
STAIR2D_FULL_RPOLYLINE_FLAGS

2D 3D UI Parameter Property Default [0]

STAIR2D_MIDDLE_BOUNDARY_GEOM array with two dimensions ([n][3]), data triplets of stair boundary polygon nodes of middle part,
similar to STAIR2D_FULL_BOUNDARY_GEOM

2D 3D UI Parameter Property Default [0]

The following globals are used to define the parts of the stair represented above the last breakmark.

STAIR2D_UPPER_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of tread polygon nodes of upper part, similar to
STAIR2D_FULL_TPOLYGON_GEOM

2D 3D UI Parameter Property Default [0]

STAIR2D_UPPER_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of tread polygon nodes of upper part, similar to
STAIR2D_FULL_TPOLYGON_FLAGS

2D 3D UI Parameter Property Default [0]

STAIR2D_UPPER_RPOLYLINE_GEOM array with two dimensions ([n][3]), data triplets of riser polyline nodes of upper part, similar to
STAIR2D_FULL_RPOLYLINE_GEOM

2D 3D UI Parameter Property Default [0]

STAIR2D_UPPER_RPOLYLINE_FLAGS array with two dimensions ([n][1]), additional data of riser polyline nodes of upper part, similar to
STAIR2D_FULL_RPOLYLINE_FLAGS

2D 3D UI Parameter Property Default [0]

Miscellaneous

GDL Reference Guide 382

STAIR2D_UPPER_BOUNDARY_GEOM array with two dimensions ([n][3]), data triplets of stair boundary polygon nodes of upper part,
similar to STAIR2D_FULL_BOUNDARY_GEOM

2D 3D UI Parameter Property Default [0]

Stair walking line symbol variables
STAIR2D_FULL_WALKLINE_GEOM array with two dimensions ([n][3]), data triplets of stair walking line nodes, full length

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the full length of the walking line
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_FULL_WALKLINE_FLAGS array with two dimensions ([n][2]), additional data of stair walking line nodes, full length

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the full length of the walking line
mask: returns information about the node position

mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: node is on trail end of first tread
j2: node is on lead end of landing
j3: node is on trail end of landing
j4: node is on lead end of last tread

• [n][1] - location mask of the node
• [n][2] - index of tread where the node is on trail end or above

STAIR2D_LOWER_WALKLINE_GEOM array with two dimensions ([n][3]), data triplets of stair walking line nodes, lower part (same logic
as stair polygon slicing)

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the lower part of the walking line
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 383

STAIR2D_LOWER_WALKLINE_FLAGS integer array with two dimensions ([n][2]), additional data of stair walking line nodes, lower part

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the lower part of the walking line
mask: returns information about the node position

mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: node is on trail end of first tread
j2: node is on lead end of landing
j3: node is on trail end of landing
j4: node is on lead end of last tread

• [n][1] - location mask of the node
• [n][2] - index of tread where the node is on trail end or above

STAIR2D_MIDDLE_WALKLINE_GEOM array with two dimensions ([n][3]), data triplets of stair walking line nodes, middle part

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the middle part of the walking line
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_MIDDLE_WALKLINE_FLAGS integer array with two dimensions ([n][2]), additional data of stair walking line nodes, middle part

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the middle part of the walking line
mask: returns information about the node position

mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: node is on trail end of first tread
j2: node is on lead end of landing
j3: node is on trail end of landing
j4: node is on lead end of last tread

• [n][1] - location mask of the node
• [n][2] - index of tread where the node is on trail end or above

Miscellaneous

GDL Reference Guide 384

STAIR2D_UPPER_WALKLINE_GEOM array with two dimensions ([n][3]), data triplets of stair walking line nodes, upper part

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the upper part of the walking line
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_UPPER_WALKLINE_FLAGS array with two dimensions ([n][2]), additional data of stair walking line nodes, upper part

2D 3D UI Parameter Property Default [0]

n = number of polyline nodes for the upper part of the walking line
mask: returns information about the node position

mask = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: node is on trail end of first tread
j2: node is on lead end of landing
j3: node is on trail end of landing
j4: node is on lead end of last tread

• [n][1] - location mask of the node
• [n][2] - index of tread where the node is on trail end or above

Stair break mark symbol variables
STAIR2D_BREAKMARK_GEOM array with two dimensions ([n][9]), data of breakmark polyline nodes

2D 3D UI Parameter Property Default [0]

n = number of breakmarks * 9 nodes-data for each breakmark (maximum number of displayed breakmarks is 4):
• [n][1] - coordinate x of polyline start measured from stair origin
• [n][2] - coordinate y of polyline start measured from stair origin
• [n][3] - coordinate x of polyline end measured from stair origin
• [n][4] - coordinate y of polyline end measured from stair origin
• [n][5] - break mark angle calculated from the perpendicular of the walking line, in degrees (value updates with editing). See also STAIR2D_BREAKMARK_ANGLE.
• [n][6] - coordinate x of start extension measured from stair origin Compatibility: introduced in ARCHICAD 22.
• [n][7] - coordinate y of start extension measured from stair origin Compatibility: introduced in ARCHICAD 22.
• [n][8] - coordinate x of end extension measured from stair origin Compatibility: introduced in ARCHICAD 22.
• [n][9] - coordinate y of end extension measured from stair origin Compatibility: introduced in ARCHICAD 22.

Miscellaneous

GDL Reference Guide 385

STAIR2D_BREAKMARK_FLAGS integer array with two dimensions ([n][1]), additional data for breakmark polyline visibility

2D 3D UI Parameter Property Default [0]

n = number of breakmarks visible in the current settings (maximum 4)
Attribute Set Index:

1: break mark visible,
2: break mark hidden

STAIR2D_BREAKMARK_ANGLE break mark angle in degrees (Real type value) as set in the Stair Settings dialog. Keeps the preset
value even if the break mark is edited.

2D 3D UI Parameter Property Default 0

Rise and Run description variables
STAIR2D_DESCRIPTION_POSITION array with two dimensions ([n][4]), containing information about the position and direction of the

Description text

2D 3D UI Parameter Property Default [0]

n: position definition:
1: center of first flight,
2: center of first landing,
3: center of last flight,
4: center of last landing,
5: center of stair.

• [n][1] - coordinate x of description position measured from stair origin
• [n][2] - coordinate y of description position measured from stair origin
• [n][3] - walking line normal vector x coordinate in description position
• [n][4] - walking line normal vector y coordinate in description position

Stair draining 2D variables
No slicing with breakmarks is present in the geometry of the following globals.

Miscellaneous

GDL Reference Guide 386

STAIR2D_EXT_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of extended tread polygon nodes (including
draining). Similar structure as STAIR2D_FULL_TPOLYGON_GEOM.

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - coordinate x of extended tread polygon node measured from stair origin
• [n][2] - coordinate y of extended tread polygon node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_EXT_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of the tread extended
polygons, in accordance with STAIR2D_EXT_TPOLYGON_GEOM. Similar structure as
STAIR2D_FULL_TPOLYGON_FLAGS.

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - index of tread
• [n][2] - edge type starting from node (0 - leading, 1 - trailing, 2 - left, 3 - right, -1 - closing)
• [n][3] - visibility of the edge starting from the node (1 - visible, 0 - omitted)
• [n][4] - type of tread (0 - flight, 1 - landing)

STAIR2D_EXT_RPOLYLINE_GEOM array with two dimensions ([n][3]), data triplets of extended riser polyline nodes (including draining).
Similar structure as STAIR2D_FULL_RPOLYLINE_GEOM.

2D 3D UI Parameter Property Default [0]

n = number of risers * 2 nodes for each tread (in general):
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_EXT_RPOLYLINE_FLAGS array with two dimensions ([n][1]), additional data of the riser polylines,
in accordance with STAIR2D_EXT_RPOLYLINE_GEOM. Similar structure as
STAIR2D_FULL_RPOLYLINE_FLAGS.

2D 3D UI Parameter Property Default [0]

n = number of risers * 2 nodes for each tread (in general):
• [n][1] - index of riser

Miscellaneous

GDL Reference Guide 387

STAIR2D_DRAIN_TPOLYGON_GEOM array with two dimensions ([n][3]), data triplets of drain polygon nodes. Similar structure as
STAIR2D_FULL_TPOLYGON_GEOM.

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - coordinate x of extended tread polygon node measured from stair origin
• [n][2] - coordinate y of extended tread polygon node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

STAIR2D_DRAIN_TPOLYGON_FLAGS array with two dimensions ([n][4]), additional data of the drain polygons,
in accordance with STAIR2D_DRAIN_TPOLYGON_GEOM. Similar structure as
STAIR2D_FULL_TPOLYGON_FLAGS.

2D 3D UI Parameter Property Default [0]

n = number of treads * 5 nodes for each tread (in general):
• [n][1] - index of tread
• [n][2] - edge type starting from node

• 0 - leading
• 1 - trailing
• 2 - left (+100 - draining side left, +200 - draining side left and "Stepped" type)
• 3 - right (+100 - draining side right, +200 - draining side right and "Stepped" type)
• -1 - closing

• [n][3] - visibility of the edge starting from the node (1 - visible, 0 - omitted)
• [n][4] - type of tread (0 - flight, 1 - landing)

Stair structure 2D variables - Beam Structures
STAIR2D_POLYLINES_GEOM array with two dimensions ([n][3]), where n is the number of structure polyline nodes of the current

flight/landing in 2D, contains geometric data of the polyline nodes derived from the stair boundary:
left boundary line, right boundary line and centerline.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of structure polyline node measured from stair origin
• [n][2] - coordinate y of structure polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 388

STAIR2D_POLYLINES_FLAGS array with two dimensions ([n][1]), where n is the number of structure polyline nodes of the current
flight/landing in 2D, contains group data of the polyline nodes.

2D 3D UI Parameter Property Default [0]

• [n][1] - position flags, point n belongs to: 0 - left boundary, 1 - right boundary, 2 - center line

STAIR2D_STRUCT_ATTRIBUTES array with two dimensions ([2][7]), containing attributes settings of the visible ([1][n]) and invisible
([2][n]) parts of the structure.

2D 3D UI Parameter Property Default [0, 0, 0,
0, 0, 0, 0]

• [n][1] - boundary line type index
• [n][2] - boundary pen index
• [n][3] - symbol fill type
• [n][4] - symbol fill pen
• [n][5] - symbol fill background pen
• [n][6] - symbol fill ON/OFF boolean control for Custom display only (STAIR2D_CUSTOMDISPLAY = 1)
• [n][7] - symbol part enable ON/OFF boolean control for Custom display only (STAIR2D_CUSTOMDISPLAY = 1).

Stair structure 2D variables - Monolithic Structure
Compatibility: introduced in ARCHICAD 22.
These globals are filled with values with respect to actual Floor Plan/Reflected Ceiling Plan View.

STAIR2D_FULL_SPOLYGON_GEOM array with two dimensions ([n][3]), containing sub-polygons of the stair 2D projection.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of structure polygon node measured from stair origin
• [n][2] - coordinate y of structure polygon node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 389

STAIR2D_FULL_SPOLYGON_FLAGS array with two dimensions ([n][2]), where n is the number of polygon nodes.

2D 3D UI Parameter Property Default [0]

• [n][1] - index of sub-polygon
• [n][2] - type of sub-polygon

• 1: Flight boundary - without connection
• 2: Flight boundary - with connection
• 3: Landing boundary - without connection
• 4: Landing boundary - with connection
• 5: Connection
• 6: Draining

• [n][3] - type of sub-polygon edge
• -1: closing point (next point is new sub-polygon)
• 0: invisible edge (only bounds area)
• 1: visible monolith edge (visible or hidden attribute set by STAIR2D_VISIBILITY)
• 2: visible connection edge (visible or hidden attribute set by STAIR2D_VISIBILITY)
• 3: visible connection detail edge (visible or hidden attribute set by STAIR2D_VISIBILITY)
A sub-polygon of type Connection can have mixed monolith and connection edges.

STAIR2D_FULL_SPOLYLINE_GEOM array with two dimensions ([n][2]), containing edges within the boundary.

2D 3D UI Parameter Property Default [0]

• [2*i][1] - coordinate x of starting node measured from stair origin
• [2*i][2] - coordinate y of starting node measured from stair origin
• [2*i + 1][1] - coordinate x of end node measured from stair origin
• [2*i + 1][2] - coordinate y of end node measured from stair origin

Miscellaneous

GDL Reference Guide 390

STAIR2D_FULL_SPOLYLINE_FLAGS array with one dimension [n], where n is the number of nodes in
STAIR2D_FULL_SPOLYLINE_GEOM.

2D 3D UI Parameter Property Default [0]

• [n] - type of edge
• 1: Going, cut with drain
• 2: Going, full
• 3: Going Nosing (slanted risers), cut with drain
• 4: Going Nosing (slanted risers), full
• 5: Landing Line, cut with drain
• 6: Landing Line, full
• 7: Connection
• 8: Connection Detail
• 9: Draining (stepped draining)
• 10: Draining Nosing (draining with slanted steps)

Miscellaneous

GDL Reference Guide 391

STAIR2D_MONOLITH_ATTRIBUTES array with two dimensions ([2][23]), containing attributes and visibility settings of the visible ([1][n])
and invisible ([2][n]) parts of the monolithic structure.

2D 3D UI Parameter Property Default [0]

• [n][1] - Structure visibility (bool)
• [n][2] - Draining visibility (bool)
• [n][3] - Contour line type
• [n][4] - Contour line pen
• [n][5] - Structure Going visibility (bool)
• [n][6] - Landing Line visibility (bool)
• [n][7] - Going Line Type
• [n][8] - Going Line Pen
• [n][9] - Structure Going Nosing visibility (bool)
• [n][10] - Going Nosing line type
• [n][11] - Going Nosing line pen
• [n][12] - Connection visibility (bool)
• [n][13] - Connection line type
• [n][14] - Connection line pen
• [n][15] - Connection Detail line type
• [n][16] - Connection Detail line pen
• [n][17] - Draining Fill and Structure Fill visibility (bool)
• [n][18] - Structure fill type
• [n][19] - Structure fill pen
• [n][20] - Structure fill background pen
• [n][21] - Draining fill type
• [n][22] - Draining fill pen
• [n][23] - Draining fill background pen

Miscellaneous

GDL Reference Guide 392

General 2D related variables
STAIR2D_CURRSTORY_LOCATION information about the current story visibility of the stair

2D 3D UI Parameter Property Default 0

values:
1: below relevant story,
2: first relevant story,
3: inter-relevant story,
4: top-last relevant story,
5: above relevant story.

Miscellaneous

GDL Reference Guide 393

STAIR2D_LAYOUT_TYPES[5] array with one dimension ([5]), information about the display layout types of the stair according to
STAIR2D_CURRSTORY_LOCATION

2D 3D UI Parameter Property Default [0]

• [1] - below relevant story layout setting
• [2] - first relevant story layout setting
• [3] - inter-relevant story layout setting
• [4] - top-last relevant story layout setting
• [5] - above relevant story layout setting

Layout setting values:
0: invalid
1: With Break Mark: Visible - Hidden
2: No Break Mark: Visible
3: Below Break Mark: Visible
4: Above Break Mark: Visible
7: No Break Mark: Hidden
8: Above Break Mark: Hidden
9: Below Break Mark: Hidden
13: With Break Mark: All Visible
14: With Break Mark: Hidden - Visible
5: Multistory 2D: Visible Inbetween Break Marks
6: Multistory 2D: Hidden - Visible - Hidden
10: Multistory 2D: All Visible
11: Multistory 2D: Hidden - Visible - None
12: Multistory 2D: None - Visible - Hidden

STAIR2D_VISIBILITY type of the active attribute set of the current drawing

2D 3D UI Parameter Property Default 0

Usable in connection with Grid and Tread 2D symbol only.
values:

1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

Miscellaneous

GDL Reference Guide 394

STAIR2D_CUSTOMDISPLAY contains information about the model view settings of the stair

2D 3D UI Parameter Property Default 0

values:
0: stair is displayed according to Model View Option settings
1: stair is displayed with custom settings

STAIR_START_WITH_RISER Boolean telling whether the stair starts with a riser.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.

STAIR_END_WITH_RISER Boolean telling whether the stair ends with a riser.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.

STAIR_TREAD_EXIST Boolean array ([2]) telling whether the stair has a Tread component.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
Treads customized in Edit mode don't have effect on these values.
• [1] - on Flight
• [2] - on Landing

STAIR_RISER_EXIST Boolean array ([2]) telling whether the stair has a Riser component.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
Risers customized in Edit mode don't have effect on these values.
• [1] - on Flight
• [2] - on Landing

Miscellaneous

GDL Reference Guide 395

STAIR_NOSING_EXIST Boolean array ([2]) telling whether the stair has a Tread nosing (length > 0) set.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
Treads customized in Edit mode don't have effect on these values.
• [1] - on Flight
• [2] - on Landing

Stair 3D variables - available for 3D representation (and connecting viewpoints) only
Compatibility: introduced in ARCHICAD 21.

Stair riser 3D variables
RISER_HEIGHT 3D height value of the selected riser

2D 3D UI Parameter Property Default 0

RISER_THICKNESS 3D thickness value of the selected riser

2D 3D UI Parameter Property Default 0

STAIR_RISER_GEOMETRY array with two dimensions ([n][3]), data triplets of stair riser polyline path nodes

2D 3D UI Parameter Property Default [0]

n = number of nodes of the riser polyline path:
• [n][1] - coordinate x of polyline node measured from stair origin
• [n][2] - coordinate y of polyline node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 396

RISER_CUT array with two dimensions ([2][2]), contains data of starting and closing points of the ideal TUBE
(modelling the riser in 3D)

2D 3D UI Parameter Property Default [0]

The display segmentation of the tube does not affect the value of this variable. To achieve a correct model in all cases, this global can be used to calculate the actual starting and
closing points of the tube following the segmented arc.
• [1][1] - coordinate x of starting node measured from stair origin
• [1][2] - coordinate y of starting node measured from stair origin
• [2][1] - coordinate x of closing node measured from stair origin
• [2][2] - coordinate y of closing node measured from stair origin

RISER_SLANT_ANGLE slant angle of the selected riser

2D 3D UI Parameter Property Default 0

In case Slanting is set to 0, the value of this global is 90 degrees.

Stair tread 2D-3D variables
TREAD_THICKNESS 3D thickness value of the selected tread

2D 3D UI Parameter Property Default 0

STAIR_TREAD_GEOMETRY array with two dimensions ([n][3]), data triplets of stair tread polygon nodes

2D 3D UI Parameter Property Default [0]

n = number of nodes of the tread polygon:
• [n][1] - coordinate x of node measured from stair origin
• [n][2] - coordinate y of node measured from stair origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 397

STAIR_TREAD_FLAGS array with two dimensions ([n][1]), additional data of the tread polygon edges (starting from nodes),
in accordance with STAIR_TREAD_GEOMETRY

2D 3D UI Parameter Property Default [0]

n = number of nodes of the tread polygon:
• [n][1] - flag of the nth edge of the polygon

flags:
0: lead edge of tread polygon
1: trail edge of tread polygon
2: left edge of tread polygon
3: right edge of tread polygon
-1: closing node of tread polygon

TREAD_LOWER_RISER_THICKNESS thickness of the riser below the current tread (measured between grid and structure)

2D 3D UI Parameter Property Default 0

TREAD_LOWER_RISER_HEIGHT height of the riser below the current tread (measured between the bottom plane of the current tread
and the upper plane of the previous tread)

2D 3D UI Parameter Property Default 0

TREAD_LOWER_RISER_SLANT_ANGLE slant angle of the riser below the current tread in degrees (is Slanting = 0, the value is 90 degrees)

2D 3D UI Parameter Property Default 0

TREAD_UPPER_RISER_THICKNESS thickness of the riser above the current tread (measured between grid and structure)

2D 3D UI Parameter Property Default 0

TREAD_UPPER_RISER_HEIGHT height of the riser above the current tread (measured between the top plane of the current tread
and the bottom plane of the following tread)

2D 3D UI Parameter Property Default 0

TREAD_UPPER_RISER_SLANT_ANGLE slant angle of the riser above the current tread in degrees (is Slanting = 0, the value is 90 degrees)

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 398

TREAD_NOSING_METHOD information about the nosing method of the current tread, as set on the Stair Settings dialog

2D 3D UI Parameter Property Default 0

values:
1: nosing by value length
2: nosing by slanting length

TREAD_NOSING contains tread nosing depth value of the selected tread (horizontal offset, as set on the Stair Settings
dialog), in case TREAD_NOSING_METHOD = 1 (nosing by value length)

2D 3D UI Parameter Property Default 0

TREAD_NOSING_BY_SLANTING contains tread nosing length value (vertical offset to control riser intersection point, as set on the
Stair Settings dialog), in case TREAD_NOSING_METHOD = 2 (nosing by slanting length)

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 399

Stair structure variables
STAIR_STRUCTURE_GEOMETRY array with two dimensions ([n][14]), where n is the number of structure polygons points of the

current flight/landing.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of structure polygon node n, measured from stair origin
• [n][2] - coordinate y of structure polygon node n, measured from stair origin
• [n][3] - coordinate z of structure polygon node n, measured from stair origin
• [n][4] - central angle in degrees of the edge starting from node n (0 - straight edge, < 0 - arc, counter-clockwise, > 0 - arc, clockwise)
• [n][5] - riser slant angle of the edge starting from node n. In case of leading edge, the angle belongs to the riser below the polygon. In case of trailing edge, the angle belongs to the

riser above the polygon. Contains 0 for all other edge categories.
• [n][6] - height of the riser below the structure polygon (returns 0 in case there is no riser, or if the polygon is a connection polygon)
• [n][7] - height of the riser above the structure polygon (returns 0 in case there is no riser, or if the polygon is a connection polygon)
• [n][8] - thickness of the tread of the structure polygon (returns 0 if the polygon is a connection polygon)
• [n][9] - thickness of the gap below the tread of the structure polygon (returns 0 if the polygon is a connection polygon)
• [n][10-14] - Compatibility: introduced in ARCHICAD 22.
• [n][10] - Cantilevered structure height (read from its ac_stairStructureThickness parameter) beneath the tread at this point. Zero in case of connection polygons.
• [n][11] - Tread nosing at the edge starting from this point.

• Zero in case of connection polygons
• Nosing of the tread above leading edges
• Nosing of the next tread above trailing edges
• Zero in case of other edges

• [n][12] - Riser thickness at the edge starting from this point.
• Zero in case of connection polygons
• Thickness of the riser below leading edges
• Thickness of the riser above trailing edges
• Zero in case of other edges

• [n][13] - Riser gap thickness at the edge starting from this point.
• Zero in case of connection polygons
• Gap thickness of the riser below leading edges
• Gap thickness of the riser above trailing edges
• Zero in case of other edges

• [n][14] - Cantilevered structure horizontal thickness (read from its ac_stairStructureHorizThick parameter) at the edge starting from this point.
• Zero in case of connection polygons
• Horizontal thickness of the cantilevered structure below leading edges
• Horizontal thickness of the cantilevered structure above trailing edges
• Zero in case of other edges

Miscellaneous

GDL Reference Guide 400

STAIR_STRUCTURE_FLAGS array with two dimensions ([n][3]), where n is the number of structure polygons points of the current
flight/landing.

2D 3D UI Parameter Property Default [0]

• [n][1] - polygon type of node n in the structure polygon: core or connection polygon
• [n][2] - indicates which side node n belongs to: left or right structure polygon where the divide is the centerline of the stair: 0 - left, 1 - right
• [n][3] - type of edge starting from node n. Possible values: 0 - leading edge, 1 - trailing edge, 2 - left edge, 3 - right edge, 4 - centerline edge, -1 - end edge.

values: indicators of node categories for [n][1]
-1: No Connection (Whole Tread) Polygon: in case of landing, all points are in this category. No such value in case of flight polygons.
0: No Connection (Core) Polygon: in case of landing, start-end connections may affect the geometry. In case of flight, the polygon is always complete.
1: Start Connection Polygon: indicates the leftover polygon, or the enclosed polygon between core and connection polygons. Nodes necessary to define beam-path: startpoint or
endpoint with boundary polygon points.
2: Start Connection Position Polygon: indicates the position of the connection. This polygon is always a generic unit polygon, not part of beam-path, and only necessary for the
cutting plane and end plate position.
3: Start Connection Break Polygon: indicates the polygon containing the breakpoints in case of a vertical or horizontal connection. Points necessary for beam-path: startpoint
or endpoint completed with boundary polygon points.
4: Start Connection Direction Polygon: indicates the polygon needed to do the bisector cut in case of a bisector connection. This polygon is always a generic unit polygon, not
part of beam-path, and only necessary to get the cutting plane position.
5: Start Connection Extension Polygon: indicates points of beam extension to support cuttings. Points necessary for beam-path: startpoint or endpoint completed with boundary
polygon points.
6: Start Connection Structure Border Polygon: indicates the beam-boundary points at start. This polygon is always a generic unit polygon. Points necessary for beam-path:
startpoint or endpoint.
101: End Connection Polygon: indicates the leftover polygon, or the enclosed polygon between core and connection polygons. Nodes necessary to define beam-path: startpoint
or endpoint with boundary polygon points.
102: End Connection Position Polygon: indicates the position of the connection. This polygon is always a generic unit polygon, not part of beam-path, and only necessary for
the cutting plane and end plate position.
103: End Connection Break Polygon: indicates the polygon containing the breakpoints in case of a vertical or horizontal connection. Points necessary for beam-path: startpoint
or endpoint completed with boundary polygon points.
104: End Connection Direction Polygon: indicates the polygon needed to do the bisector cut in case of a bisector connection. This polygon is always a generic unit polygon, not
part of beam-path, and only necessary to get the cutting plane position.
105: End Connection Extension Polygon: indicates points of beam extension to support cuttings. Points necessary for beam-path: startpoint or endpoint completed with boundary
polygon points.
106: End Connection Structure Border Polygon: indicates the beam-boundary points at end. This polygon is always a generic unit polygon. Points necessary for beam-path:
startpoint or endpoint.

Miscellaneous

GDL Reference Guide 401

STAIR_STRUCTURE_CONN_OFFSETS array with two dimensions ([2][6]). Contains data of connection offset points.

2D 3D UI Parameter Property Default [0]

• [1][1] - Start connection horizontal offset (dx)
• [1][2] - Start connection vertical offset (dy)
• [1][3] - Start connection horizontal offset 2 (dx1)
• [1][4] - Start connection vertical offset 2 (dy1)
• [1][5] - Start connection horizontal offset (cx)
• [1][6] - Start connection vertical offset (cy)
• [2][1] - End connection horizontal offset (dx)
• [2][2] - End connection vertical offset (dy)
• [2][3] - End connection horizontal offset 2 (dx1)
• [2][4] - End connection vertical offset 2 (dy1)
• [2][5] - End connection horizontal offset (cx)
• [2][6] - End connection vertical offset (cy)

STAIR_STRUCTURE_CONN_FLAGS array with two dimensions ([2][3]). Contains additional data of the structure connection.

2D 3D UI Parameter Property Default 0

• [1][1] - Start connection type: 0 - vertical cut, 1 - Horizontal cut, 2 - cutout, 3 - vertical and horizontal cut, 4 - horizontal connection, 5 - horizontal connection and cutout,
6 - vertical connection, 7 - bisector, 8 - automatic.

• [1][2] - Start connection role: 0 - run and start, 1 - run and landing, 2 - landing and run, 3 - run and run, 4 - run and end, 5 - landing and landing.
• [1][3] - Tread or riser by start: 0 - riser by start, 1 - tread by start.
• [2][1] - End connection type: 0 - vertical cut, 1 - Horizontal cut, 2 - cutout, 3 - vertical and horizontal cut, 4 - horizontal connection, 5 - horizontal connection and cutout,

6 - vertical connection, 7 - bisector, 8 - automatic.
• [2][2] - End connection role: 0 - run and start, 1 - run and landing, 2 - landing and run, 3 - run and run, 4 - run and end, 5 - landing and landing.
• [2][3] - Tread or riser by end: 0 - riser by end, 1 - tread by end.

STAIR_STRINGER_PATH_OFFSET contains the value set in "Height above Treads" in Stair Settings dialog.

2D 3D UI Parameter Property Default 0

Railing component parameters

General railing variables - available for listing and labels
Compatibility: introduced in ARCHICAD 21.

Miscellaneous

GDL Reference Guide 402

RAILING_HEIGHT height of the railing segment (as set in Railing Settings Dialog / Segment Settings)

2D 3D UI Parameter Property Default 0

RAILING_3DLENGTH full 3D length of the railing

2D 3D UI Parameter Property Default 0

RAILING_HORIZONTAL_LENGTH full projected 2D length of the railing

2D 3D UI Parameter Property Default 0

RAILING_VOLUME volume of the railing (including all subelements)

2D 3D UI Parameter Property Default 0

RAILING_NR_OF_SEGMENTS number of segments in the railing

2D 3D UI Parameter Property Default 0

RAILING_NR_OF_POSTS number of posts in the railing

2D 3D UI Parameter Property Default 0

RAILING_NR_OF_BALUSTERS number of balusters in the railing

2D 3D UI Parameter Property Default 0

RAILING_NR_OF_PANELS number of panels in the railing

2D 3D UI Parameter Property Default 0

RAILING_NR_OF_RAILS number of rails in the railing

2D 3D UI Parameter Property Default 0

Railing 3D variables
Compatibility: introduced in ARCHICAD 21.

Miscellaneous

GDL Reference Guide 403

RAILING_REFLINE_DISTANCE array with one dimension ([2]), horizontal offsets of rail element from railing reference line.

2D 3D UI Parameter Property Default [0]

• [1] - offset of segment reference line from the railing reference line
• [2] - offset of panel element from the segment reference line (always 0 in case of inner post, post or toprail)

RAIL_CONNECTING_POSTS_NUM number of posts and inner posts intersecting the rail.

2D 3D UI Parameter Property Default 0

RAIL_CONNECTING_POSTS array with two dimensions ([n][2]), where n is the number of posts or inner posts along the rail.
Contains position data of these intersecting elements.

2D 3D UI Parameter Property Default [0]

• [n][1] - position of posts and inner posts along the rail. Position values are calculated proportionally regarding the rail length (values are between 0-1)
• [n][2] - skew value of post or inner post (similar as in the case of panel). Corner element values may differ from inbetween elements'.

RAIL_TYPE contains the subelement type the current library part is selected for.

2D 3D UI Parameter Property Default 0

• 1 - toprail (or toprail end)
• 2 - handrail (or handrail end)
• 3 - rail (or rail end)

RAIL_POLYLINE_GEOMETRY array with two dimensions ([n][5]), where n is the number of railing nodes (n > 2). Contains
geometric data of the current railing, all segments.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of railing node
• [n][2] - coordinate y of railing node
• [n][3] - coordinate z of railing node
• [n][4] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)
• [n][5] - rotation of the cross-section for TUBE command. The rotation of automatically extended twisted railing connections may differ from slant value.

Miscellaneous

GDL Reference Guide 404

RAIL_SEGMENT_FLAGS array with one dimension ([n]), where n is the number of railing nodes (n > 2). Contains geometric
data of the current railing, all segments.

2D 3D UI Parameter Property Default [0]

Identifies the segment the node belongs to by index, in acordance with RAIL_POLYLINE_GEOMETRY. Nodes in the same segment belong together.

RAIL_CUTS array with two dimensions ([2][4]), defines the orientation of the end surfaces of the rail

2D 3D UI Parameter Property Default [0]

The returned coordinates can be used in TUBE command for first and last path coordinates as is. Items of [1][n] belong to the starting vertex, while [2][n] sets coordintes of the
ending vertex.
• [1][1] - coordinate x
• [1][2] - coordinate y
• [1][3] - coordinate z
• [1][4] - boolean, cutting method: 0 - continuous edges, 1 - mittered cut

RAIL_DISCONNECTED_CUTS array with two dimensions ([2][4]), defines the orientation of the end surfaces in case of disconnected
connection.

2D 3D UI Parameter Property Default [0]

The returned coordinates can be used in TUBE command for first and last path coordinates as is. Items of [1][n] belong to the end vertex of the first segment, while [2][n] sets
coordintes at the starting vertex of the second segment.
• [1][1] - coordinate x
• [1][2] - coordinate y
• [1][3] - coordinate z
• [1][4] - 0 (reserved for future development)
Compatibility: introduced in ARCHICAD 22.

RAIL_COMPONENTS array with one dimension ([3]), contains additional information about the rail.

2D 3D UI Parameter Property Default [0]

Boolean type to indicate the need/presence of fixings, caps.
• [1] - presence of fixings needed (none for connections or extensions)
• [2] - presence of opening caps needed (start of rail, or connceted to another)
• [3] - presence of closing caps needed (end of rail, or connceted to another)

Miscellaneous

GDL Reference Guide 405

RAIL_SLANT_ANGLE rail slant angle in degrees relative to vertical direction, perpendicular to walking direction.

2D 3D UI Parameter Property Default 0

values: possible values (< 90 degrees)
positive: slanting to the left relative to walking direction
negative: slanting to the right relative to walking direction

Curved sections: the angle is measured on a vertical, radial plane.

RAILINGPANEL_TYPE generic geometry type of the panel.

2D 3D UI Parameter Property Default 0

• 1 - planar
• 2 - cylindrical (curved - vertical or curved - skewed)
• 3 - conic (curved - horizontal - slanted)
• 4 - twisted (curved - inclined - slanted or curved - slanted - skewed)

RAILINGPANEL_UNCUT_GEOMETRY array with two dimensions ([n][4]), where n is the number of panel nodes (n > 3). Contains geometric
data of the current railing panel, complete raw geometry (without cuts).

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of railing panel node
• [n][2] - coordinate y of railing panel node
• [n][3] - coordinate z of railing panel node
• [n][4] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAILINGPANEL_GEOMETRY array with two dimensions ([n][5]), where n is the number of panel nodes (n > 3). Contains geometric
data of the current railing panel, cutting planes applied.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of railing panel node
• [n][2] - coordinate y of railing panel node
• [n][3] - coordinate z of railing panel node
• [n][4] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)
• [n][5] - in case of a cut edge, contains the cutting plane angle (0 - perpendicular to panel). In case of a curved panel, the reference plane is tangential.

Miscellaneous

GDL Reference Guide 406

RAILINGPANEL_FLAGS array with two dimensions ([n][3]), where n is the number of panel nodes (n > 3) in accordance
with RAILINGPANEL_GEOMETRY. Contains geometric data of the current railing panel edges,
cutting planes applied.

2D 3D UI Parameter Property Default [0]

• [n][1] - segment number of edge starting from node in the uncut panel
• [n][2] - position of the edge starting from node in the cut panel (indexing according to RAILINGPANEL_SIDE_OFFSETS)
• [n][3] - status bit of edge

mask: [n][3] possible values
mask = j1 + 2*j2, where each j can be 0 or 1.
j1: edge starting from node connected to another panel
j2: edge starting from node is cut

RAILINGPANEL_SIDE_OFFSETS array with one dimension ([4]), contains the panel offsets as set in the Railing Settings dialog, distance
of neihbouring element axes in a vertical plane, slanting and skewing disregarded.

2D 3D UI Parameter Property Default [0]

• [1] - bottom offset
• [2] - end vertex side offset
• [3] - top offset
• [4] - starting vertex side offset

RAILINGPANEL_SLANT_ANGLE slant angle in degrees, perpendicular to walking direction. Vertical is 0 degrees, positive values
mean left side, negative values mean right side of walking direction (angle < 90). Curved segments:
measured on plane perpendicular to the start tangential plane of the segment (before skewing).

2D 3D UI Parameter Property Default 0

RAILINGPANEL_SKEW_ANGLE skew angle in degrees, parallel to walking direction. Vertical is 0 degrees, positive values mean
backward, negative values mean forward skewing according to walking direction (angle < 90).
Curved segments: measured on the start tangential plane of the segment (before slanting).

2D 3D UI Parameter Property Default 0

Miscellaneous

GDL Reference Guide 407

RAILINGPOST_TYPE contains the subelement type the current library part is selected for.

2D 3D UI Parameter Property Default 0

• 1 - post
• 2 - inner post
• 3 - baluster

RAILINGPOST_TOP_COORD array with one dimension ([3]), coordinates of the top of the current post

2D 3D UI Parameter Property Default [0, 0, 0]

• [1] - coordinate x
• [2] - coordinate y
• [3] - coordinate z

RAILINGPOST_CUTS array with two dimensions ([2][3]), defines the orientation of the end surfaces of the post

2D 3D UI Parameter Property Default [0]

The returned coordinates can be used in TUBE command for first and last path coordinates as is. Items of [1][n] belong to the base vertex, while [2][n] sets coordintes of the top vertex.
• [1][1] - coordinate x
• [1][2] - coordinate y
• [1][3] - coordinate z

RAILINGPOST_SEGMENT_CUTS array with two dimensions ([2][4]), contains the vector parameters of two planes used to cut inner
posts and balusters at the boundary of the segment, when the railing is slanted

2D 3D UI Parameter Property Default [0]

The normal of the plane is vector (A; B; C), and D is its distance from the origin, measured in the direction of the normal. The model should be cut in the direction of the normal.
In case of all 0 return values for any of the 2 planes, the plane does not exist (no cut).
• [1][1] - A
• [1][2] - B
• [1][3] - C
• [1][4] - D

Miscellaneous

GDL Reference Guide 408

RAILINGEND_DIRECTION_AND_ANGLE array with two dimensions ([n][5]), vector data pointing away from the connecting rail in a tangential
direction. For two ends of a straight rail, these vectors are opponent in direction.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of vector
• [n][2] - coordinate y of vector
• [n][3] - coordinate z of vector
• [n][4] - rotation of the connecting rail around the vector’s axis, with the effect of slanting. The railend should model the same rotation to connect seamlessly.

Railing 2D variables
Compatibility: introduced in ARCHICAD 21.

RAIL2D_FULL_POLYLINE_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end axis
polyline. Contains geometric data of the railing panel.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_FULL_POLYLINE_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end axis
polyline. Contains visibility data of edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

RAIL2D_FULL_POLYGON_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end symbol
polygon. Contains geometric data of the railing panel.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

Miscellaneous

GDL Reference Guide 409

RAIL2D_FULL_POLYGON_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end symbol
polygon. Contains visibility data of edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

RAIL2D_FULL_VISIBILITY type of the active attribute set of the current railing drawing.

2D 3D UI Parameter Property Default 0

values:
1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

RAIL2D_CUSTOMDISPLAY contains information about the model view settings of the railing.

2D 3D UI Parameter Property Default 0

values:
0: railing is displayed according to Model View Option settings
1: railing is displayed with custom settings

The following globals are used to define the parts of the railing represented below the first breakmark.

RAIL2D_LOWER_POLYLINE_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end axis
polyline below the first breakmark. Contains geometric data of the railing panel polyline.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_LOWER_POLYLINE_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end axis
polyline below the first breakmark. Contains visibility data of edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

Miscellaneous

GDL Reference Guide 410

RAIL2D_LOWER_POLYGON_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end symbol
polygon below the first breakmark. Contains geometric data of the railing panel polygon.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_LOWER_POLYGON_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end symbol
polygon below the first breakmark. Contains visibility data of polygon edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

RAIL2D_LOWER_VISIBILITY type of the active attribute set of the current railing drawing below the first breakmark.

2D 3D UI Parameter Property Default 0

values:
1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

The following globals are used to define the parts of the railing represented between two breakmarks.

RAIL2D_MIDDLE_POLYLINE_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end axis
polyline between breakmarks. Contains geometric data of the railing panel polyline.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_MIDDLE_POLYLINE_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end axis
polyline between breakmarks. Contains visibility data of edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

Miscellaneous

GDL Reference Guide 411

RAIL2D_MIDDLE_POLYGON_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end symbol
polygon between breakmarks. Contains geometric data of the railing panel polygon.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_MIDDLE_POLYGON_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end symbol
polygon between breakmarks. Contains visibility data of polygon edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

RAIL2D_MIDDLE_VISIBILITY type of the active attribute set of the current railing drawing between breakmarks.

2D 3D UI Parameter Property Default 0

values:
1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

The following globals are used to define the parts of the railing represented above the last breakmark.

RAIL2D_UPPER_POLYLINE_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end axis
polyline above the last breakmark. Contains geometric data of the railing panel polyline.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_UPPER_POLYLINE_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end axis
polyline above the last breakmark. Contains visibility data of edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

Miscellaneous

GDL Reference Guide 412

RAIL2D_UPPER_POLYGON_GEOM array with two dimensions ([n][3]), where n is the number of points in the panel/rail/rail end symbol
polygon above the last breakmark. Contains geometric data of the railing panel polygon.

2D 3D UI Parameter Property Default [0]

• [n][1] - coordinate x of node measured from railing origin
• [n][2] - coordinate y of node measured from railing origin
• [n][3] - central angle of edge starting from the node (0 - straight, > 0 - curved counter-clockwise, < 0 - curved clockwise)

RAIL2D_UPPER_POLYGON_FLAGS array with two dimensions ([n][1]), where n is the number of points in the panel/rail/rail end symbol
polygon above the last breakmark. Contains visibility data of polygon edges.

2D 3D UI Parameter Property Default [0]

• [n][1] - visibility flag of edge starting at node n (0 - not visible, 1 - visible)

RAIL2D_UPPER_VISIBILITY type of the active attribute set of the current railing drawing above the last breakmark.

2D 3D UI Parameter Property Default 0

values:
1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

The following global belongs to the 2D representation of railing posts.
RAILPOST2D_VISIBILITY type of the active attribute set of the current post drawing.

2D 3D UI Parameter Property Default 0

values:
1: 'Visible' attribute set is in effect
0: 'Hidden' attribute set is in effect

Roof parameters - available for skylights, listing and labels
ROOF_THICKNESS thickness of the roof

ROOF_ANGLE slope of the roof

ROOF_MAT_TOP surface attribute index of the top surface of the roof

ROOF_MAT_EDGE surface attribute index of the edges of the roof

Miscellaneous

GDL Reference Guide 413

ROOF_MAT_BOTT surface attribute index of the bottom surface of the roof

ROOF_LINETYPE line type of the roof

applied on the contours only in the floor plan window

ROOF_FILL fill of the roof

fill index - its value is negative in case of a composite structure

ROOF_FILL_PEN pen of the fill of the roof

ROOF_FBGD_PEN pen of the background of the fill of the roof

ROOF_COMPS_NAME name of the composite structure of the roof

ROOF_BMAT_NAME building material name of the roof, empty string for composite roofs

ROOF_BMAT building material index of the roof, 0 for composite roofs

Compatibility: introduced in ARCHICAD 21.

ROOF_SKINS_NUMBER number of composite roof skins

range of 1 to 8, 0 if single fill applied

Miscellaneous

GDL Reference Guide 414

ROOF_SKINS_PARAMS parameters of the composite roof skin

array with 18 columns with arbitrary number of rows:
• [1] fill
• [2] thickness
• [3] (old contour pen)
• [4] pen of fill
• [5] pen of fill background
• [6] core status
• [7] upper line pen
• [8] upper line type
• [9] lower line pen
• [10] lower line type
• [11] end face pen
• [12] fill orientation
• [13] skin type
• [14] end face line type
• [15] finish skin status
• [16] oriented fill status
• [17] core skin status (if no core skin exists, the thickest skin)
• [18] building material index.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ARCHICAD always 0 - cut, it can be used as in walls
later; finish skin status: 0 not finish skin, 1: finish skin

ROOF_SKINS_BMAT_NAMES building material names of the composite roof skin

array with 1 column: building material name of the skin and with arbitrary number of rows.

ROOF_SECT_PEN pen of the contours of the roof cut surfaces

applied on contours of cut surfaces both in floor plan and section/elevation windows

ROOF_VIEW_PEN pen of the roof on view

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows

Miscellaneous

GDL Reference Guide 415

Roof parameters - available for listing and labels only
ROOF_BOTTOM_SURF bottom surface area of the roof

not reduced by the surface area of the holes, which are bigger than the given value

ROOF_GROSS_BOTTOM_SURF gross surface area of the roof bottom

reduced by the surface area of the holes

ROOF_BOTTOM_SURF_CON conditional bottom surface area of the roof

reduced by the surface area of the holes, which are bigger than the given value

ROOF_TOP_SURF top surface area of the roof

not reduced by the surface area of the holes, which are bigger than the given value

ROOF_GROSS_TOP_SURF gross surface area of the roof top

reduced by the surface area of the holes

ROOF_TOP_SURF_CON conditional surface area of the roof

reduced by the surface area of the holes, which are bigger than the given value

ROOF_EDGE_SURF surface area of the edge of the roof

not reduced by the surface area of the holes

ROOF_GROSS_EDGE_SURF gross surface area of the roof edges

reduced by the surface area of the holes

ROOF_CONTOUR_AREA area covered by the roof

ROOF_PERIMETER perimeter of the roof

ROOF_VOLUME volume of the roof

not reduced by the volume of holes

ROOF_GROSS_VOLUME gross volume of the roof

reduced by the volume of holes

ROOF_VOLUME_CON conditional volume of the roof

reduced by the volume of holes, which are bigger than the given value

Miscellaneous

GDL Reference Guide 416

ROOF_SEGMENTS_NR number of segments of the roof

ROOF_HOLES_NR number of holes in the roof

ROOF_HOLES_AREA area of holes in the roof

ROOF_HOLES_PRM perimeter of holes in the roof

ROOF_INSU_THICKNESS roof insulation skin thickness

ROOF_RIDGE roof ridges length

ROOF_VALLEY roof valleys length

ROOF_GABLE roof gables length

ROOF_HIP roof hips length

ROOF_EAVES roof eaves length

ROOF_PEAK roof peaks length

ROOF_SIDE_WALL roof side wall connection length

ROOF_END_WALL roof end wall connection length

ROOF_TRANSITION_DOME roof dome connection length

ROOF_TRANSITION_HOLLOW roof hollow connection length

Fill parameters - available for listing and labels only
FILL_LINETYPE line type of the fill

FILL_FILL fill type of the fill

FILL_BMAT_NAME building material name of the fill

FILL_BMAT building material index of the fill

Compatibility: introduced in ARCHICAD 21.

FILL_FILL_PEN pen of the fill pattern of the fill

FILL_PEN pen of the fill

FILL_FBGD_PEN pen of the background of the fill

Miscellaneous

GDL Reference Guide 417

FILL_SURF area of the fill

FILL_PERIMETER perimeter of the fill

FILL_SEGMENT_NR number of segments of the fill

FILL_HOLES_NR number of holes in the fill

FILL_HOLES_PRM perimeter of holes in the fill

FILL_HOLES_AREA area of holes in the fill

FILL_FILL_CATEGORY fill category of the fill

0 - Draft, 1 - Cut, 2 - Cover

Mesh parameters - available for listing and labels only
MESH_TYPE type of the mesh

1- closed body, 2 - top & edge, 3 - top surface only

MESH_BASE_OFFSET offset of the bottom surface to the base level

MESH_USEREDGE_PEN pen of the user defined ridges of the mesh

MESH_TRIEDGE_PEN pen of the triangulated edges of the mesh

MESH_SECT_PEN pen of the contours of the mesh in section

applied on contours of cut surfaces of walls both in floor plan and section/elevation windows

MESH_VIEW_PEN pen of the contours on view

applied on all edges in 3D window and on edges on view in section/elevation windows

MESH_MAT_TOP surface attribute index of the top surface of the mesh

MESH_MAT_EDGE surface attribute index of the edges of the mesh

MESH_MAT_BOTT surface attribute index of the bottom surface of the mesh

MESH_LINETYPE line type of the mesh

applied on the contours only in the floor plan window

MESH_FILL fill type of the mesh

Miscellaneous

GDL Reference Guide 418

MESH_BMAT_NAME building material name of the mesh

MESH_BMAT building material index of the mesh

Compatibility: introduced in ARCHICAD 21.

MESH_FILL_PEN pen of the fill of the mesh

MESH_FBGD_PEN pen of the background of the fill of the mesh

MESH_BOTTOM_SURF bottom surface area of the mesh

MESH_TOP_SURF top surface area of the mesh

MESH_EDGE_SURF surface area of the edge of the mesh

MESH_PERIMETER perimeter of the mesh

MESH_VOLUME volume of the mesh

MESH_SEGMENTS_NR number of segments of the mesh

MESH_HOLES_NR number of holes in the mesh

MESH_HOLES_AREA area of holes in the mesh

MESH_HOLES_PRM perimeter of holes in the mesh

Curtain Wall component parameters
CW_BOUNDARY_PLACEMENT Placement of the curtain wall frame

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
Contains the Placement settings of the boundary frames defined at Curtain Wall System / Member Placement.

values:
0: Center on Boundary, or the actual frame is not a boundary frame.
-1: Inside Boundary
1: Outside Boundary

Miscellaneous

GDL Reference Guide 419

GLOB_MVO_CWFRAME_DETLEVEL Detail level of curtain wall frames set in Model View Options / Curtain Wall Options.

2D 3D UI Parameter Property Default 4

Compatibility: introduced in ARCHICAD 22.
values:

1: Axis Only
2: Schematic
3: Simplified
4: Detailed

GLOB_MVO_CWPANEL_DETLEVEL Detail level of curtain wall panels set in Model View Options / Curtain Wall Options.

2D 3D UI Parameter Property Default 4

Compatibility: introduced in ARCHICAD 22.
values:

2: Schematic
3: Simplified
4: Detailed

GLOB_MVO_CWJUNCT_DETLEVEL Detail level of curtain wall junctions set in Model View Options / Curtain Wall Options.

2D 3D UI Parameter Property Default 4

Compatibility: introduced in ARCHICAD 22.
values:

2: Schematic
3: Simplified
4: Detailed

GLOB_MVO_CWACC_DETLEVEL Detail level of curtain wall accessories set in Model View Options / Curtain Wall Options.

2D 3D UI Parameter Property Default 4

Compatibility: introduced in ARCHICAD 22.
values:

2: Schematic
3: Simplified
4: Detailed

Miscellaneous

GDL Reference Guide 420

Curtain Wall parameters - available for listing and labels only
CWALL_ID user ID of the curtain wall

CWALL_FRAMES_LENGTH length of frames in the curtain wall

CWALL_CONTOUR_FRAMES_LENGTH length of frames on contour in the curtain wall

CWALL_MAINAXIS_FRAMES_LENGTH length of frames on primary gridlines in the curtain wall

CWALL_SECAXIS_FRAMES_LENGTH length of frames on secondary gridlines in the curtain wall

CWALL_CUSTOM_FRAMES_LENGTH length of other frames in the curtain wall

CWALL_PANELS_SURF surface area of panels in the curtain wall

CWALL_PANELS_SURF_N surface area of north panels in the curtain wall

CWALL_PANELS_SURF_S surface area of south panels in the curtain wall

CWALL_PANELS_SURF_E surface area of east panels in the curtain wall

CWALL_PANELS_SURF_W surface area of west panels in the curtain wall

CWALL_PANELS_SURF_NE surface area of northeast panels in the curtain wall

CWALL_PANELS_SURF_NW surface area of northwest panels in the curtain wall

CWALL_PANELS_SURF_SE surface area of southeast panels in the curtain wall

CWALL_PANELS_SURF_SW surface area of southwest panels in the curtain wall

CWALL_SURF surface area of the curtain wall

CWALL_SURF_BOUNDARY surface area of the curtain wall bordered by boundary frames

CWALL_LENGTH length of the curtain wall

CWALL_HEIGHT height of the curtain wall

CWALL_SLANT_ANGLE slant angle of the curtain wall

CWALL_THICKNESS thickness of the curtain wall

CWALL_PANELS_NR number of panels in the curtain wall

CWALL_PATTERN_ANGLE pattern angle of the curtain wall

Miscellaneous

GDL Reference Guide 421

Curtain Wall Frame parameters

General Curtain Wall Frame variables - available for listing and labels only
CWFRAME_TYPE type of the frame

'Invisible' or the name of the GDL object
Compatibility: up to ARCHICAD 21 'Generic', 'Butt-glazed', 'Invisible' or the name of the GDL object

CWFRAME_POSITION location of the frame. From ARCHICAD 22 the frame position definition is based on the frames
relative coordinate values.

0 - vertical, 1 - horizontal, 2 - contour, 3 - diagonal
Compatibility: up to ARCHICAD 21 the frame position definition is based on the gridlines. The values refers to: 0 - primary gridline, 1 - secondary gridline, 2 - boundary, 3 - other

CWFRAME_DIRECTION slant angle of the frame

degree between 0 and 90

CWFRAME_WIDTH width of the frame

CWFRAME_DEPTH depth of the frame

CWFRAME_LENGTH length of the frame

CWFRAME_MAT surface attribute index of the frame

Curtain Wall Frame 3D variables
CWFRAME_TOP_CUTTYPE Defines the cutting method at the curtain wall frame top connection.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
values:

0: Plane - the frame should be cut by a plane defined in CWFRAME_TOP_CUTPLANE global
1: Polyline - the frame should be cut along a polyline defined in CWFRAME_TOP_CUTPOLYLINE global

Miscellaneous

GDL Reference Guide 422

CWFRAME_TOP_CUTPLANE array with one dimension ([4]), containing the top cutplane position of the frame, defined in the
local coordinate system of the library part

2D 3D UI Parameter Property Default [0, 0, 0, 0]

Compatibility: introduced in ARCHICAD 22.
values:

[1]: X component of the normal vector of top cutplane
[2]: Y component of the normal vector of top cutplane
[3]: Z component of the normal vector of top cutplane
[4]: distance of top cutplane from frame origo

CWFRAME_TOP_CUTPOLYLINE array with two dimensions ([n][2]), where n is the number of nodes of the cutting polyline. Contains
the cutting polyline coordinates for the top connection of the frame, defined in the Y-Z plane of
the local coordinate system of the library part. The first node of the polyline is on the minimal Y
coordinate value, the last node is on the maximal Y coordinate value of the curtain wall frame.

2D 3D UI Parameter Property Default [0, 0]

Compatibility: introduced in ARCHICAD 22.
values:

[n][1]: coordinate X of node measured from curtain wall frame origin
[n][2]: coordinate Y of node measured from curtain wall frame origin

CWFRAME_BOTTOM_CUTTYPE Defines the cutting method at the curtain wall frame bottom connection.

2D 3D UI Parameter Property Default 0

Compatibility: introduced in ARCHICAD 22.
values:

0: Plane - the frame should be cut by a plane defined in CWFRAME_BOTTOM_CUTPLANE global
1: Polyline - the frame should be cut along a polyline defined in CWFRAME_BOTTOM_CUTPOLYLINE global

Miscellaneous

GDL Reference Guide 423

CWFRAME_BOTTOM_CUTPLANE array with one dimension ([4]), containing the bottom cutplane position of the frame, defined in
the local coordinate system of the library part

2D 3D UI Parameter Property Default [0, 0, 0, 0]

Compatibility: introduced in ARCHICAD 22.
values:

[1]: X component of the normal vector of bottom cutplane
[2]: Y component of the normal vector of bottom cutplane
[3]: Z component of the normal vector of bottom cutplane
[4]: distance of bottom cutplane from frame origo

CWFRAME_BOTTOM_CUTPOLYLINE array with two dimensions ([n][2]), where n is the number of nodes of the cutting polyline. Contains
the cutting polyline coordinates for the bottom connection of the frame, defined in the Y-Z plane
of the local coordinate system of the library part. The first node of the polyline is on the minimal
Y coordinate value, the last node is on the maximal Y coordinate value of the curtain wall frame.

2D 3D UI Parameter Property Default [0, 0]

Compatibility: introduced in ARCHICAD 22.
values:

[n][1]: coordinate X of node measured from curtain wall frame origin
[n][2]: coordinate Y of node measured from curtain wall frame origin

Curtain Wall Panel variables
CWPANEL_HORIZONTAL_DIRECTION angle of exterior surface of the panel from Project North.

2D 3D UI Parameter Property Default [180]

Compatibility: introduced in ARCHICAD 22 for 2D and 3D scripts. In previous versions it is working only for labels and listing.
values: degree between -180 and 180

CWPANEL_VERTICAL_DIRECTION slant angle of exterior surface of the panel.

2D 3D UI Parameter Property Default [90]

Compatibility: introduced in ARCHICAD 22 for 2D and 3D scripts. In previous versions it is working only for labels and listing.
values: degree between -90 and 90

Miscellaneous

GDL Reference Guide 424

Curtain Wall Panel parameters - available for listing and labels only
CWPANEL_TYPE type of the panel

"Generic" or the name of the GDL object

CWPANEL_CLASS class of the panel

0 - main, 1 - distinct, 2 - custom

CWPANEL_WIDTH width of the panel

CWPANEL_NOMINAL_WIDTH nominal width of the panel

CWPANEL_HEIGHT height of the panel

CWPANEL_NOMINAL_HEIGHT nominal height of the panel

CWPANEL_THICKNESS thickness of the panel

CWPANEL_SURF surface area of the panel

CWPANEL_GROSS_SURF gross surface area of the panel

CWPANEL_NOMINAL_SURF nominal surface area of the panel

CWPANEL_PERIMETER perimeter of the panel

CWPANEL_MAT_OUTER surface attribute index for the exterior surface of the panel

CWPANEL_MAT_INNER surface attribute index for the interior surface of the panel

CWPANEL_MAT_CUT surface attribute index for the edge of the panel

CWPANEL_FUNCTION function of the panel

0 - fixed, 1 - door, 2 - window

CWPANEL_ORIENTATION opening orientation of door/window panel

left/right

Curtain Wall Junction parameters - available for listing and labels only
CWJUNC_TYPE type of the junction

name of the GDL object

Miscellaneous

GDL Reference Guide 425

Curtain Wall Accessory parameters - available for listing and labels only
CWACC_TYPE type of the accessory

name of the GDL object

Migration parameters - available for migration scripts only
FROM_GUID Main GUID of the library part which was placed originally

TO_GUID Main GUID of the library part to which the migration is performed

Skylight parameters - available for listing and labels only
SKYL_MARKER_TXT skylight marker text

SKYL_OPENING_SURF skylight opening surface

SKYL_OPENING_VOLUME volume of the opening cut by the skylight

SKYL_OPENING_HEIGHT skylight opening height

SKYL_OPENING_WIDTH skylight opening width

SKYL_HEADER_HEIGHT skylight header height

SKYL_SILL_HEIGHT skylight sill height

Common Parameters for Shells and Roofs - available for listing and labels only
SHELLBASE_THICKNESS thickness of the shell/roof/slab

equal to ROOF_THICKNESS for roofs

SHELLBASE_MAT_REFERENCE surface attribute index of the bottom surface of the shell/roof

equal to ROOF_MAT_BOTT for roofs

SHELLBASE_MAT_EDGE surface attribute index of the edges of the shell/roof

equal to ROOF_MAT_EDGE for roofs

SHELLBASE_MAT_OPPOSITE surface attribute index of the top surface of the shell/roof

equal to ROOF_MAT_TOP for roofs

Miscellaneous

GDL Reference Guide 426

SHELLBASE_LINETYPE line type of the shell/roof

applied on the contours only in the floor plan window, equal to ROOF_LINETYPE for roofs

SHELLBASE_FILL fill of the shell/roof

fill index - its value is negative in case of a composite structure, equal to ROOF_FILL for roofs

SHELLBASE_FILL_PEN pen of the fill of the roof shell/roof

equal to ROOF_FILL_PEN for roofs

SHELLBASE_FBGD_PEN pen of the background of the fill of the shell/roof

equal to ROOF_FBGD_PEN for roofs

SHELLBASE_COMPS_NAME name of the composite structure of the shell/roof

equal to ROOF_COMPS_NAME for roofs

SHELLBASE_BMAT_NAME building material name of the shell/roof

equal to ROOF_BMAT_NAME for roofs

SHELLBASE_BMAT building material index of the shell/roof

Compatibility: introduced in ARCHICAD 21.
equal to ROOF_BMAT for roofs

SHELLBASE_SKINS_NUMBER number of composite roof skins shell/roof

range of 1 to 8, 0 if single fill applied, equal to ROOF_SKINS_NR for roofs

Miscellaneous

GDL Reference Guide 427

SHELLBASE_SKINS_PARAMS parameters of the composite roof skin shell/roof

array with 18 columnswith arbitrary number of rows:
• [1] fill
• [2] thickness
• [3] (old contour pen)
• [4] pen of fill
• [5] pen of fill background
• [6] core status
• [7] upper line pen
• [8] upper line type
• [9] lower line pen
• [10] lower line type
• [11] end face pen
• [12] fill orientation
• [13] skin type
• [14] end face line type
• [15] finish skin status
• [16] oriented fill status
• [17] core skin status (if no core skin exists, the thickest skin)
• [18] building material index.
core status: 0 - not part, 1 - part, 3 - last skin of core, fill orientation: 0 - global, 1 - local; skin type: in the current ARCHICAD always 0 - cut, it can be used as in walls
later; finish skin status: 0 not finish skin, 1: finish skin
equal to ROOF_SKINS_PARAMS for roofs

SHELLBASE_SKINS_BMAT_NAMES building material names of the composite roof skin shell/roof

array with 1 column: building material name of the skin and with arbitrary number of rows.
equal to ROOF_SKINS_BMAT_NAMES for roofs

SHELLBASE_SECT_PEN pen of the contours of the roof cut surfaces shell/roof

applied on contours of cut surfaces both in floor plan and section/elevation windows, equal to ROOF_SECT_PEN for roofs

SHELLBASE_VIEW_PEN pen of the roof on view shell/roof

applied on all edges in 3D window and on outline edges (edges on view below cutting plane) in floor plan and section/elevation windows, equal to ROOF_VIEW_PEN for roofs

Miscellaneous

GDL Reference Guide 428

SHELLBASE_REFERENCE_SURF reference side surface of the shell/roof

not reduced by the surface of holes, equal to ROOF_BOTTOM_SURF for roofs

SHELLBASE_COND_REFERENCE_SURF conditional reference side surface of the shell/roof

equal to ROOF_BOTTOM_SURF_CON for roofs

SHELLBASE_GROSS_REFERENCE_SURF gross surface of the shell/roof reference side

reduced by the surface of the holes, equal to ROOF_GROSS_BOTTOM_SURF for roofs

SHELLBASE_OPPOSITE_SURF surface of the opposite side to the reference side of the shell/roof

not reduced by the surface of holes, equal to ROOF_TOP_SURF for roofs

SHELLBASE_COND_OPPOSITE_SURF conditional surface of the opposite side to the reference side of the shell/roof

reduced by the surface of the holes, which are bigger than the given value; equal to ROOF_TOP_SURF_CON for roofs

SHELLBASE_GROSS_OPPOSITE_SURF gross surface of the opposite side to the reference side of the shell/roof

reduced by the surface of the holes, equal to ROOF_GROSS_TOP_SURF for roofs

SHELLBASE_EDGE_SURF surface of the edge of the shell/roof

not reduced by the surface of holes, equal to ROOF_EDGE_SURF for roofs

SHELLBASE_GROSS_EDGE_SURF gross surface of the shell/roof edges

reduced by the surface of holes, equal to ROOF_GROSS_EDGE_SURF for roofs

SHELLBASE_PERIMETER perimeter of the shell/roof

equal to ROOF_PERIMETER for roofs

SHELLBASE_VOLUME volume of the shell/roof

not reduced by the volume of holes, equal to ROOF_VOLUME for roofs

SHELLBASE_COND_VOLUME conditional volume of the roof shell/roof

reduced by the volume of holes, which are bigger than the given value; equal to ROOF_VOLUME_CON for roofs

SHELLBASE_GROSS_VOLUME gross volume of the roof shell/roof

reduced by the volume of holes, equal to ROOF_GROSS_VOLUME for roofs

Miscellaneous

GDL Reference Guide 429

SHELLBASE_HOLES_NR number of holes in the shell/roof

equal to ROOF_HOLES_NR for roofs

SHELLBASE_HOLES_SURF surface of holes in the shell/roof

equal to ROOF_HOLES_AREA for roofs

SHELLBASE_HOLES_PRM perimeter of holes in the shell

equal to ROOF_HOLES_PRM for roofs

SHELLBASE_OPENINGS_NR number of openings in the shell

SHELLBASE_OPENINGS_SURF surface of openings in the shell

SHELLBASE_INSU_THICKNESS shell/roof insulation skin thickness

equal to ROOF_INSU_THICKNESS for roofs

SHELLBASE_RIDGE shell/roof ridges length

equal to ROOF_RIDGE for roofs

SHELLBASE_VALLEY shell/roof valleys length

equal to ROOF_VALLEY for roofs

SHELLBASE_GABLE shell/roof gables length

equal to ROOF_GABLE for roofs

SHELLBASE_HIP shell/roof hips length

equal to ROOF_HIP for roofs

SHELLBASE_EAVES shell/roof eaves length

equal to ROOF_EAVES for roofs

SHELLBASE_PEAK shell/roof peaks length

equal to ROOF_PEAK for roofs

SHELLBASE_SIDE_WALL shell/roof side wall connection length

equal to ROOF_SIDE_WALL for roofs

Miscellaneous

GDL Reference Guide 430

SHELLBASE_END_WALL shell/roof end wall connection length

equal to ROOF_END_WALL for roofs

SHELLBASE_TRANSITION_DOME shell/roof dome connection length

equal to ROOF_TRANSITION_DOME for roofs

SHELLBASE_TRANSITION_HOLLOW shell/roof hollow connection length

equal to ROOF_TRANSITION_HOLLOW for roofs

Parameters for Morphs - available for listing and labels only
MORPH_LINETYPE Line type of the morph on view

MORPH_FILL Fill of the morph cut surfaces

MORPH_BMAT_NAME Building material name of the morph cut surfaces

MORPH_BMAT Building material index of the morph cut surfaces

Compatibility: introduced in ARCHICAD 21.

MORPH_FILL_PEN Pen of the morph cut surfaces

MORPH_FBGD_PEN Pen of the background of the fill of the morph cut surfaces

MORPH_SECT_LINETYPE Line type of the contours of the morph cut surfaces

MORPH_SECT_PEN Pen of the contours of the moprh cut surfaces

MORPH_VIEW_PEN Pen of the contours of the morph on view

MORPH_SOLID Morph body solid (on/off)

MORPH_MAT_DEFAULT Morph default surface attribute index

MORPH_CASTS_SHADOW Cast shadow (on/off)

MORPH_RECEIVES_SHADOW Receive shadow (on/off)

MORPH_SURFACE Gross surface of the morph

MORPH_VOLUME Volume of the morph

MORPH_FLOOR_PERIMETER perimeter of the morph on the floor plan

Miscellaneous

GDL Reference Guide 431

Free users’ globals
GLOB_USER_1

GLOB_USER_2

GLOB_USER_3

GLOB_USER_4

GLOB_USER_5

GLOB_USER_6

GLOB_USER_7

GLOB_USER_8

GLOB_USER_9

GLOB_USER_10 free variables 1 to 10 are initialized to number by default

GLOB_USER_11

GLOB_USER_12

GLOB_USER_13

GLOB_USER_14

GLOB_USER_15

GLOB_USER_16

GLOB_USER_17

GLOB_USER_18

GLOB_USER_19

GLOB_USER_20 free variables 11 to 20 are initialized to string by default

Miscellaneous

GDL Reference Guide 432

Example usage of global variables

Example: Illustrating the usage of the GLOB_WORLD_ORIGO_... globals
ADD2 -GLOB_WORLD_ORIGO_OFFSET_X-SYMB_POS_X, -GLOB_WORLD_ORIGO_OFFSET_X-SYMB_POS_Y
LINE2 -0.1, 0.0, 0.1, 0.0
LINE2 0.0, -0.1, 0.0, 0.1
HOTSPOT2 0.0, 0.0, 1
TEXT2 0, 0, "(0.00 ; 0.00)"
TEXT2 0, 0.5, "World Origin"
DEL TOP
if ABS(GLOB_WORLD_ORIGO_OFFSET_X) > 0.01 OR\
 ABS(GLOB_WORLD_ORIGO_OFFSET_Y) > 0.01 THEN
 ADD2 - SYMB_POS_X, - SYMB_POS_Y
 LINE2 -0.1, 0.0, 0.1, 0.0
 LINE2 0.0, -0.1, 0.0, 0.1
 HOTSPOT2 0.0, 0.0, 2
 TEXT2 0, 0, "(" +
 STR (GLOB_WORLD_ORIGO_OFFSET_X, 9, 4) + "; " +
 STR (GLOB_WORLD_ORIGO_OFFSET_Y, 9, 4) + ")"
 TEXT2 0, 0.5, "Virtual Origin"
 DEL TOP
ENDIF
if ABS(GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X) > 0.01 OR\
 ABS(GLOB_WORLD_ORIGO_OFFSET_Y + SYMB_POS_Y) > 0.01 THEN
 LINE2 -0.1, 0.0, 0.1, 0.0
 LINE2 0.0, -0.1, 0.0, 0.1
 HOTSPOT2 0.0, 0.0, 3
 TEXT2 0, 0, "(" +
 STR (GLOB_WORLD_ORIGO_OFFSET_X + SYMB_POS_X, 9, 4) + "; " +
 STR (GLOB_WORLD_ORIGO_OFFSET_Y + SYMB_POS_Y, 9, 4) + ")"
 TEXT2 0, 0.5, "Object Placement"
ENDIF

Deprecated Global Variables
These globals are still working in ARCHICAD's environment for compatibility reasons, but avoiding them is recommended during new object
creation.

Miscellaneous

GDL Reference Guide 433

GLOB_CONTEXT context of appearance (view dependent, do not use in parameter/property scripts)

2D 3D UI Parameter Property Default 2

1 - library part editor, 2 - floor plan, 3 - 3D view, 4 - section/elevation, 5 - settings dialog, 6 - list, 7 - detail drawing, 8 - layout, 22 - editing feedback mode from the floor plan, 23
- editing feedback mode from a 3D view, 24 - editing feedback mode from a section/elevation, 28 - editing feedback mode from a layout, 43 - generating as an operator from a 3D
view, 44 - generating as an operator from a section/elevation, 46 - generating as an operator from a list. See the section called “GDL execution contexts” for more details.

Deprecated Beam/Column Global Variables - available for listing and labels only
From ARCHICAD 23 these values are available in BEAM_SEGMENT_INFO and COLU_SEGMENT_INFO global variables with
uniformized value references. See also the section called “Deprecated Beam/Column parameters - available for listing and labels only”.
For compatibility, they are still available on homogeneous, straight or horizontally curved Beams and on homogeneous Columns
(GLOB_ELEM_TYPE = 12 or 6).
COLU_CROSSSECTION_TYPE cross-section type of the column

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

0 - complex profiled, 1 - rectangular, 4 - round

BEAM_CROSSSECTION_TYPE cross-section type of the beam

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

0 - complex profiled, 1 - rectangular

Deprecated Label Global Variables
These globals have been replaced by fix named optional parameters starting from ARCHICAD 22 (see section). For compatibility reasons, the
global variables are still maintained, so legacy object behaviour should not be affected.
Label text handling group of globals:
LABEL_ALWAYS_READABLE label text is always readable

1 if Always Readable is checked, 0 otherwise

LABEL_TEXT_WRAP wrap label text

1 if Wrap Text is checked, 0 otherwise

Miscellaneous

GDL Reference Guide 434

LABEL_TEXT_ALIGN text alignment

1 - left aligned, 2 - center aligned, 3 - right aligned, 4 - full justified

LABEL_TEXT_LEADING line spacing factor

LABEL_TEXT_WIDTH_FACT width factor

LABEL_TEXT_CHARSPACE_FACT spacing factor

LABEL_FONT_NAME font name

LABEL_TEXT_SIZE text size

LABEL_TEXT_PEN pen of the text

LABEL_TEXT_BG_PEN text box background pen

0 if opaque is off, the background pen index otherwise

LABEL_FONT_STYLE font style

0-normal, 1-bold, 2-italic, 4- underline

LABEL_FONT_STYLE2 font style in the settings dialog box

0 - normal, otherwise j1 + 2*j2 + 4*j3 + 32*j6 + 64*j7 + 128*j8, j1 - bold, j2 - italic, j3 - underline, j6 - superscript, j7 - subscript, j8 - strikethrough

Label pointer/frame handling group of globals:

LABEL_CUSTOM_ARROW use symbol arrow option on/off

1 if the Use symbol arrow checkbox is checked, 0 otherwise

LABEL_ARROW_LINETYPE line type of the line of the arrow

LABEL_ARROW_PEN pen of the arrow

LABEL_FRAME_ON label frame on/off

1 if the label frame is checked, 0 otherwise

LABEL_FRAME_OFFSET frame offset

LABEL_ANCHOR_POS label anchor position

0 - middle, 1 - top, 2 - bottom, 3 - bottom right

Miscellaneous

GDL Reference Guide 435

Deprecated Curtain Wall Frame Global Variable - available for listing and labels only
From ARCHICAD 22 User-defined curtain wall frame classes has been introduced instead of the predefined classes. For compatibility reasons,
the CWFRAME_CLASS global variable is still maintained.

CWFRAME_CLASS class of the frame

2 - boundary, 3 - other
Compatibility: up to ARCHICAD 21 the values can be 0 - mullion, 1 - transom, 2 - boundary, 3 - custom

Old Global Variables
Old global variable names can be used; however, the use of the new names is recommended. Each old global corresponds to a new variable
with a long name.

Miscellaneous

GDL Reference Guide 436

A_ GLOB_SCALE
B_ GLOB_HSTORY_ELEV
C_ WALL_THICKNESS
D_ WALL_HEIGHT
E_ WALL_SECT_PEN
F_ WALL_FILL_PEN
G_ WALL_MAT_A
H_ WALL_MAT_B
I_ WALL_MAT_EDGE
J_ GLOB_ELEVATION
K_ WIDO_SILL
L_ SYMB_VIEW_PEN
M_ SYMB_MAT
N_ GLOB_FRAME_NR
O_ GLOB_FIRST_FRAME
P_ GLOB_LAST_FRAME
Q_ GLOB_HSTORY_HEIGHT
R_ WIDO_ORIG_DIST
S_ GLOB_USER_1
T_ GLOB_USER_2
U_ GLOB_USER_3
V_ GLOB_USER_4
W_ GLOB_USER_5
X_ GLOB_USER_6
Y_ GLOB_USER_7
Z_ GLOB_USER_8

Miscellaneous

GDL Reference Guide 437

A~ WALL_FILL
B~ WIDO_RIGHT_JAMB
C~ WIDO_THRES_DEPTH
D~ WIDO_HEAD_DEPTH
E~ WIDO_REVEAL_SIDE
F~ WIDO_FRAME_THICKNESS
G~ GLOB_USER_9
H~ WIDO_POSITION
I~ GLOB_USER_10
J~ WALL_RESOL
K~ GLOB_EYEPOS_X
L~ GLOB_EYEPOS_Y
M~ GLOB_EYEPOS_Z
N~ GLOB_TARGPOS_X
O~ GLOB_TARGPOS_Y
P~ GLOB_TARGPOS_Z
Q~ GLOB_CSTORY_ELEV
R~ GLOB_CSTORY_HEIGHT
S~ GLOB_CH_STORY_DIST
T~ GLOB_SCRIPT_TYPE
U~ GLOB_NORTH_DIR
V~ SYMB_MIRRORED
W~ SYMB_ROTANGLE
X~ SYMB_POS_X
Y~ SYMB_POS_Y
Z~ SYMB_POS_Z

FIX NAMED OPTIONAL PARAMETERS

Parameters set by ARCHICAD
The new method of ARCHICAD for providing information is the method of fixed named optional parameters. If a given library part has a
parameter matching a fix named optional parameter in name and in type, ARCHICAD sets its value according to its function.

Miscellaneous

GDL Reference Guide 438

Parameters for D/W attributes (available for Door, Window, Label, Listing)

Floor plan display
ac_hole_cut_linetype linetype

pen of cut lines [floor plan and section]

ac_hole_overhead_pen pen

pen of the above view edges (overhead) [floor plan only]

ac_hole_overhead_linetype linetype

line type of the above view edges (overhead) [floor plan only]

ac_hole_uncut_pen pen

pen of the below view edges (uncut) [floor plan only]

ac_hole_uncut_linetype linetype

line type of the below view edges (uncut) [floor plan only]

ac_hole_display_option integer

floor plan display option: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 5 - Overhead All

Direction
ac_hole_direction_type integer

opening plane direction: 1 - Associated to Wall, 2 - Vertical

ac_wido_rotation angle

door/window rotation angle relative to the horizontal cut plane

ac_openingside string

door/window orientation parameter for listing (L - left, R - right, Custom) according to orientation definition settings (Automatic, Custom). ARCHICAD will disregard any settings
of Compatibility Options/Orientation Displaying if this parameter is present.

Miscellaneous

GDL Reference Guide 439

Polygonal wall data
ac_walltype integer

tells whether the window is in a polygonal wall or not. 1 - non polygonal, 2 - polygonal.

ac_wallContourPolygon[][3] length

The polygon of the wall in 2D points plus an extra angle value for arc sections. [set only if ac_walltype equals 2]

ac_windowInWallContour[4] integer

Indices of the four vertices of the ac_wallContourPolygon polygon that part of the wall contour polygon as window corner points. [set only if ac_walltype equals 2]

Hole position
ac_hole_position_angle angle

In case of curved walls it gives the angle between the axis of the opening and the normal vector at the wall's starting point.

Anchor data
ac_vertAnchorPos integer

vertical anchor of D/W: 1 - Sill, 2 - Header

ac_revealAnchorPos integer

reveal anchor of D/W: 1 - Face, 2 - Core

ac_revealToWallCore length

reveal depth measured from the reveal side of the wall core.

Parameters for WALL attributes (available for Door, Window, Label, Listing)

Floor plan display
ac_wall_overhead_pen pen

pen of the above view edges of the wall (overhead) [floor plan only]

ac_wall_overhead_linetype linetype

line type of the above view edges of the wall (overhead) [floor plan only]

Miscellaneous

GDL Reference Guide 440

ac_wall_uncut_linetype linetype

line type of the below view edges of the wall (uncut) [floor plan only]

ac_wall_display_option integer

floor plan display option of the wall: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

ac_wall_show_projection_to integer

vertical view depth limitation of the wall: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

Geometric data
ac_wall_elevation length

elevation of the wall bottom, relative to home story of the wall

ac_wall_crosssection_type integer

wall cross section type: 1 - Simple, 2 - Complex, 3 - Slanted, 4 - Trapezoid

ac_wall_profile_name string

profile name if the wall is complex with profile attribute, "Custom_Profile_i" if complex with custom profile (i being the id of the placed wall) or "n/a" if the wall is simple,
slanted or trapezoid

ac_wall_slant_angle1 angle

first slant angle of the wall relative to the horizontal (90 degrees if the wall is vertical)

ac_wall_slant_angle2 angle

second slant angle of the wall relative to the horizontal (90 degrees if the wall is vertical)

ac_wall_direction_type integer

wall direction type; the construction method of the wall, which means the adjustment of the wall body and the reference line: 0 - Right, 1 - Left, 2 - Center (Right), 3 - Center (Left).
Center values mean that the wall is set to 'Center' in the user interface, but the side notation shows how the wall acts internally.

Parameters for COLUMN attributes (available for Label, Listing)
The availability of each parameter (whether it contains meaningful data) is shown in a table with icons, with the value of the
GLOB_ELEM_TYPE global variable in parentheses.

Miscellaneous

GDL Reference Guide 441

Floor plan display
ac_colu_overhead_pen pen

pen of the above view edges of the column (overhead) [floor plan only]

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_overhead_linetype linetype

line type of the above view edges of the column (overhead) [floor plan only]

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_uncut_linetype linetype

line type of the below view edges of the column (uncut) [floor plan only]

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_display_option integer

floor plan display option of the column: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_show_projection_to integer

vertical view depth limitation of the column: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Miscellaneous

GDL Reference Guide 442

Geometric data
ac_colu_profile_name string

profile name if the column is complex with profile attribute, "Custom_Profile_i" if complex with custom profile (i being the id of the placed column) or "n/a" if the column is
rectangular or round

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_inclination angle

inclination angle of the column relative to the horizontal line

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

ac_colu_twist_angle angle

twist angle of the cross section

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

Parameters for BEAM attributes (available for Label, Listing)
The availability of each parameter (whether it contains meaningful data) is shown in a table with icons, with the value of the
GLOB_ELEM_TYPE global variable in parentheses.

Floor plan display
ac_beam_overhead_pen pen

pen of the above view edges of the beam(overhead) [floor plan only]

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

ac_beam_cut_linetype linetype

line type of the cut edges of the beam [not valid for complex profile]

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 443

ac_beam_uncut_pen pen

pen of the below view edges of the beam (uncut) [floor plan only]

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

ac_beam_uncut_linetype linetype

line type of the below view edges of the beam (uncut) [floor plan only]

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

ac_beam_display_option integer

floor plan display option of the beam: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

ac_beam_show_projection_to integer

vertical view depth limitation of the beam: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Geometric data
ac_beam_profile_name string

profile name if complex with profile attribute, "Custom_Profile_i" if complex with custom profile (i being the id of the placed beam) or "n/a" if the beam is rectangular

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

ac_beam_inclination angle

inclination angle of the beam relative to the horizontal line

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Miscellaneous

GDL Reference Guide 444

ac_beam_twist_angle angle

twist angle of the cross section (0.0 for non-complex beams)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

Parameters for ROOF attributes (available for Label, Listing)

Floor plan display
ac_roof_overhead_pen pen

pen of the above view edges of the roof (overhead) [floor plan only]

ac_roof_overhead_linetype linetype

line type of the above view edges of the roof (overhead) [floor plan only]

ac_roof_display_option integer

floor plan display option of the roof: 1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

ac_roof_show_projection_to integer

vertical view depth limitation of the roof: 1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

Door/Window Marker attributes
ac_wido_id string

ID of the opening

ac_wido_a_size length

opening width

ac_wido_b_size length

opening height

ac_wido_z_size length

opening depth/thickness

Miscellaneous

GDL Reference Guide 445

ac_glob_elevation length

elevation of the base line of the opening

ac_wido_subfl_thickness length

height of the subfloor wall part

ac_wido_reveal_side boolean

legacy opening reveal side value, use ac_wido_reveal_side_2 instead

ac_wido_reveal_side_2 boolean

reveal side, the value of the WIDO_REVEAL_SIDE global variable set for the opening

ac_wido_mirrored boolean

mirrored state of the opening

ac_wall_thickness length

thickness of the wall at the origin of the opening

ac_wido_oversize_l length

left opening oversize

ac_wido_oversize_r length

right opening oversize

ac_wido_oversize_t length

top opening oversize

ac_wido_oversize_b length

bottom opening oversize

ac_wido_orientation string

marker position: "L" - Left, "R" - right, or any custom value set in the Details window of the library part editor according to the current mirrored state

ac_wido_type integer

1 - Door, 2 - Window

Miscellaneous

GDL Reference Guide 446

ac_symb_rotangle angle

opening rotation in the wall

ac_sill_to_curr_story length

sill height of the opening measured from the start of the story linked to the window sill

ac_sill_to_anchor_level length

sill height of the opening measured from the level of the anchor point; the anchor point may be the bottom of the wall or the selected story, accordingly

Detail/Worksheet Marker attributes
ac_showboundary boolean

Marker boundary polygon state. 0 - boundary off, 1 - boundary on.

Drawing Title attributes
ac_drawingName string

Name of the drawing.

ac_drawingNumber string

ID of the drawing.

ac_sourceFileName string

Name of the drawing source file (if the drawing comes from an external file).

ac_sourceFilePath string

Path of the drawing source file (if the drawing comes from an external file).

ac_drawingScale string

Drawing scale set for the drawing.

ac_magnification real number

Magnification percentage set for the drawing.

ac_originalDrawingScale string

Drawing scale of the originating view.

Miscellaneous

GDL Reference Guide 447

ac_enableBackReference boolean

Back referencing is enabled for the drawing.

ac_backReferenceGUIDList string array

List of referred layout GUIDs. They can be used in autotext outputs.

ac_showDrawingReferences boolean

Show back references.

General running context
ac_programVersion integer

This parameter contains the version of ARCHICAD executing the library part's scripts.

Miscellaneous

GDL Reference Guide 448

Room parameters (available for Zone Stamps)

Name Type Default Description

ROOM_NAME String "" Zone name

ROOM_NUMBER String "" Zone number

ROOM_AREA Real 0.0 Area of gross/net polygon

ROOM_PERIM Length 0.0 Perimeter of gross/net polygon

ROOM_HOLES_PRM Length 0.0 Perimeter of net polygon holes

ROOM_WALLS_PRM Length 0.0 Perimeter of net polygon (with holes) but only where bordered by wall

ROOM_CORNERS Integer 0 Corners of net polygon (with holes)

ROOM_CONCAVES Integer 0 Concave corners of net polygon (with holes)

ROOM_WALLS_SURF Real 0.0 Bordering walls' surfaces (bordering parts)

ROOM_DOORS_WID Real 0.0 Doors' lengths at border

ROOM_DOORS_SURF Real 0.0 Doors' surfaces at border

ROOM_WINDS_WID Length 0.0 Windows' lengths at border

ROOM_WINDS_SURF Real 0.0 Windows' surfaces at border

ROOM_BASELEV Length 0.0 Zone level

ROOM_FL_THICK Length 0.0 Zone subfloor thickness

ROOM_HEIGHT Length 0.0 Zone height

ROOM_NET_AREA Real 0.0 Area of net polygon (with holes)

ROOM_NET_PERIMETER Length 0.0 Perimeter of net polygon (with holes)

ROOM_WALL_EXTR_AREA Real 0.0 Reducing area by walls inside zone (not zone boundary type!)

Miscellaneous

GDL Reference Guide 449

Name Type Default Description

ROOM_COLUMN_EXTR_AREA Real 0.0 Reducing area by columns inside zone (not zone boundary type!)

ROOM_FILL_EXTR_AREA Real 0.0 Reducing area by hatches inside zone (considering percentage!)

ROOM_LOW_EXTR_AREA Real 0.0 Reducing area by low parts (trimmed) (considering preferences!)

ROOM_TOTAL_EXTR_AREA Real 0.0 Sum of previous values (total extraction)

ROOM_REDUCED_AREA Real 0.0 ROOM_NET_AREA - ROOM_TOTAL_EXTR_AREA

ROOM_AREA_FACTOR Real 0.0 1 - Reduced_by_in_dialog / 100

ROOM_CALC_AREA Real 0.0 ROOM_REDUCED_AREA * ROOM_AREA_FACTOR

ROOM_VOLUME Real 0.0 Calculated from trimmed room upon net polygon

ROOM_BOUNDARY_SURF Real 0.0 Surface of boundary side pages

ROOM_TOP_SURFACE Real 0.0 Surface of zone top

ROOM_BOT_SURFACE Real 0.0 Surface of zone bottom

ROOM_ROOF_TOP_SURF Real 0.0 Surface of zone top where trimmed by a Roof

ROOM_ROOF_BOT_SURF Real 0.0 Surface of zone bottom where trimmed by a Roof

ROOM_SLAB_TOP_SURF Real 0.0 Surface of zone top where trimmed by a Slab

ROOM_SLAB_BOT_SURF Real 0.0 Surface of zone bottom where trimmed by a Slab

ROOM_BEAM_TOP_SURF Real 0.0 Surface of zone top where trimmed by a Beam

ROOM_BEAM_BOT_SURF Real 0.0 Surface of zone bottom where trimmed by a Beam

ROOM_WALL_IN_TOP_SURF Real 0.0 Sum of top surfaces of wall insets (or recess or niche)

ROOM_WALL_IN_BACK_SURF Real 0.0 Sum of back surfaces of wall insets (facing to window)

ROOM_WALL_IN_SIDE_SURF Real 0.0 Sum of side surfaces of wall insets

ROOM_POLY_STATUS Integer 0 0:manual, 1:Auto, 2:Auto-refline

Miscellaneous

GDL Reference Guide 450

Stair related parameters

Flight / Landing Side Supported subtypes
ac_beamPlacement integer

This parameter reflects which side of the stair the stringer is placed. Compatibility: introduced in ARCHICAD 21.
• 0 - Left (when viewed as going up the stair)
• 1 - Right

Riser Component subtype
ac_RiserPosition integer

This parameter reflects the current settings of riser and tread connections:
• 0 - Riser on Tread OFF
• 1 - Riser on Tread ON

Stair 2D Component subtypes
ac_treadClassifications integer - array

Type of each tread (indexed from bottom upwards):
• 0 - Tread
• 1 - Landing

Parameters set/read by ARCHICAD
ARCHICAD can synchronize values with library parts through parameters with predefined name and function. The list of such parameters
follows below.

Stair related parameters

Structure subtype
ac_stairStructureWidth length

Width of the structure stringer, as set in the Stair Settings. Value is 0 for beam structure type.

Miscellaneous

GDL Reference Guide 451

ac_stairStructureThickness length

 Thickness/height of the beam or cantilevered structure, as set in the Stair Settings.

Parameters read by ARCHICAD
ARCHICAD can get values from library parts through parameters with predefined name and function. The list of such parameters follows below.

Objects on Floor Plan

Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects)
ac_special_2d_symbol boolean

This parameter enables a 2D cutting mechanism in ARCHICAD floor plan. If the parameter is set to 1, ARCHICAD cuts the 2D model (generated by the 2D script of the
libpart) according to the parameter values in: ac_symb_display_option, ac_symb_show_projection_to and ac_plane_definition. This 2D-based cut works like the display of simple
roofs with the same settings. Naturally, this method gives correct output for plane-like elements only - like skylights and roof accessories. The plane of the flat object - and the plane
of the cut - is defined by the parameter ac_plane_definition. In case of Skylight and Roof Accessory elements - if ac_special_2d_symbol is 1 -, the above parameters are set by the
add-on automatically. In case of other elements, they should be filled in by the library developer.

ac_plane_definition length

Plane definition: ([1],[2],[3]): a point on the plane, ([4],[5],[6]): normal vector of the plane.

ac_symb_display_option integer

1 - Projected, 2 - Projected with Overhead, 3 - Symbolic, 4 - OutLines Only, 5 - Overhead All

ac_symb_show_projection_to integer

1 - To Floor Plan Range, 2 - To Absolute Display Limit, 3 - Entire Element

ac_bottomlevel length

This parameter indicates the lowest point of the object. When Show on Stories is set to All Relevant Stories, if this lowest point (calculated from the object's home story settings) is
contained in a story's vertical extension, the object is displayed on the story. Top level has to be above the bottom level.
ac_bottomlevel starts from the object origin of the object.

ac_toplevel length

When Show on Stories is set to All Relevant Stories this parameter tells the top of the object. The object will be visible on a story if the story's height is between the bottomlevel
and the toplevel. Top level has to be above the bottom level.
ac_toplevel starts from the object origin of the object.

Miscellaneous

GDL Reference Guide 452

Door/Window objects
ac_wido_sill length

This parameter provides full access to the sill depth of the opening object. The parameter can get a value list, it can be locked and hidden and its value can be set via the parameter
script. Its current value will be assigned to the WIDO_SILL global variable for compatibility with older scripts.

ac_wido_hide_options integer

Via this bitfield parameter you can disable options from the window/door settings dialog. ac_wido_hide_options = j1 + 2*j2. If j1 is set, the sill depth inputs on the
default ARCHICAD settings dialog is hidden. If j2 is set, the reveal settings in the settings dialog are disabled.

ac_wido_flip_once boolean

Flips the window or door once after the execution of the migration script if the parameter is present and its value is true.

ac_wido_flip_disable integer

This parameter can disable the "Flip" button on the user interface. The default value affects only the placing of the object.
-1: Flip is enabled.
0: Flip is disabled. The default is not flipped.
1: Flip is disabled. The default is flipped.

ac_wido_mirror_once boolean

Mirrors the window or door once after the execution of the migration script if the parameter is present and its value is true.

ac_hole_hotspot_control integer

Controls whether openings have automatic hotspots. 0 - No automatic hotspots, 1 - Only in 2D, 2 - Only in 3D, 3 - Everywhere

ac_holeSideMaterial boolean

Controls the inherited surfaces of the wallhole. In case the wallhole is defined from GDL script, this parameter has no effect.
1: Wallhole has the same surface as wall edge.
0: Wallhole surface is divided by the sill depth line, using the inside-outside surfaces of the wall.

ac_holeMaterialCurved boolean

Controls the division line geometry of inside-outside wall surfaces of the wallhole in curved walls. In case the wallhole is defined from GDL script, this parameter has no effect.
1: Surfaces connect in a curved line.
0: Surfaces connect in a straight line.

Miscellaneous

GDL Reference Guide 453

Custom Component Template
ac_custom_component_type_name string

This parameter contains the name of the Custom Component Template which is displayed on the "Save Component As..." menu. It can differ from the object name.

Stair related parameters

Structure subtype
ac_beamProfileID integer

Index of the selected profile used for the structure beam. ARCHICAD provides the boundingbox size of the profile by the means of request options.

Flight / Landing Under Supported subtype
ac_stairStructureHorizThick length

 Horizontal thickness of cantilevered structure, ie. the part behind risers. Compatibility: introduced in ARCHICAD 22.

ac_stairStructureBoundsRiser boolean

This can be used for signalling that the risers should be narrower than the stair boundary. Use together with the four parameters below. Compatibility: introduced in ARCHICAD 22.

ac_stairRiserLeftBoundaryFrom integer

Stretch left edge of the risers relative to: Compatibility: introduced in ARCHICAD 22.
• -1 - Left boundary of stair
• 0 - Centerline of stair
• 1 - Right boundary of stair
• These are not necessarily parallel with eachother.

ac_stairRiserLeftBoundary length

Distance of left riser edge measured from the anchor line set in ac_stairRiserLeftBoundaryFrom. Positive direction is to the right. Compatibility: introduced in ARCHICAD 22.

ac_stairRiserRightBoundaryFrom integer

Stretch right vertical edge of the risers relative to: Compatibility: introduced in ARCHICAD 22.
• -1 - Left boundary of stair
• 0 - Centerline of stair
• 1 - Right boundary of stair
• These are not necessarily parallel with eachother.

Miscellaneous

GDL Reference Guide 454

ac_stairRiserRightBoundary length

Distance of right riser edge measured from the anchor line set in ac_stairRiserRightBoundaryFrom. Positive direction is to the right. Compatibility: introduced in ARCHICAD 22.

Flight Under Supported Cantilever / Landing Cantilever Supported subtypes
ac_stairWallFixingWidthLeft length

 The depth of the cantilever in the wall (on the left side of the stair). Used at drawing the 2D symbol of the cantilever: any drawing beyond this will be cropped. Compatibility:
introduced in ARCHICAD 21.

ac_stairWallFixingWidthRight length

 The depth of the cantilever in the wall (on the right side of the stair). Used at drawing the 2D symbol of the cantilever: any drawing beyond this will be cropped. Compatibility:
introduced in ARCHICAD 21.

Railing related parameters

Railing Panel Component subtype
ac_panelThickness length

Thickness of panel section in the railing. Parameter value should be kept consistent with the model size via Parameter script.

Railing Rail Component subtype
ac_railWidth length

Absolute width of the rail section mesured on a plane perpendicular to rail axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_railHeight length

Absolute height of the rail section mesured on a plane perpendicular to rail axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_rail_boundingbox_left length

Relative distance of the rail section bounding box left side measured from the rail section axis (RAIL_POLYLINE_GEOMETRY), on a plane perpendicular to rail axis, looking
in the direction of the rail. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_rail_boundingbox_right length

Relative distance of the rail section bounding box right side measured from the rail section axis (RAIL_POLYLINE_GEOMETRY), on a plane perpendicular to rail axis,
looking in the direction of the rail. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

Miscellaneous

GDL Reference Guide 455

ac_rail_boundingbox_top length

Relative distance of the rail section bounding box top measured from the rail section axis (RAIL_POLYLINE_GEOMETRY), on a plane perpendicular to rail axis, looking in
the direction of the rail. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_rail_boundingbox_bottom length

Relative distance of the rail section bounding box bottom measured from the rail section axis (RAIL_POLYLINE_GEOMETRY), on a plane perpendicular to rail axis, looking
in the direction of the rail. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_railProfileID integer

Index of the selected profile used for the rail. ARCHICAD provides the boundingbox size of the profile by the means of request options.

Railing Post Component subtype
ac_postWidth length

Absolute width of the post section mesured on a plane perpendicular to post axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_postHeight length

Absolute height of the post section mesured on a plane perpendicular to post axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_post_boundingbox_left length

Relative distance of the post section bounding box left side measured from the post section axis, on a plane perpendicular to post axis, left means the direction of the beginning of the
reference line, looking from the inside. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_post_boundingbox_right length

Relative distance of the post section bounding box right side measured from the post section axis, on a plane perpendicular to post axis, right means the direction of the end of the
reference line, looking from the inside. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_post_boundingbox_inside length

Relative distance of the post section bounding box measured horizontally from the post section axis, on a plane perpendicular to post axis, inside meaning the side a right-side handrail
is placed on. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_post_boundingbox_outside length

Relative distance of the post section bounding box measured horizontally from the post section axis, on a plane perpendicular to post axis, outside meaning the opposite side a right-
side handrail is placed on. Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_postProfileID integer

Index of the selected profile used for the post. ARCHICAD provides the boundingbox size of the profile by the means of request options.

Miscellaneous

GDL Reference Guide 456

Railing End Component subtype
ac_railendWidth length

Absolute width of the railend section mesured on a plane perpendicular to railend axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_railendHeight length

Absolute height of the railend section mesured on a plane perpendicular to railend axis. Parameter value should be kept consistent with the model size via Parameter script.

ac_railend_boundingbox_left length

Relative distance of the rail section bounding box left side measured from the railend section axis, on a plane perpendicular to railend axis, looking in the direction of the railend.
Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_railend_boundingbox_right length

Relative distance of the railend section bounding box right side measured from the railend section axis, on a plane perpendicular to railend axis, looking in the direction of the railend.
Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_railend_boundingbox_top length

Relative distance of the railend section bounding box top measured from the railend section axis, on a plane perpendicular to railend axis, looking in the direction of the railend.
Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_railend_boundingbox_bottom length

Relative distance of the railend section bounding box bottom measured from the railend section axis, on a plane perpendicular to railend axis, looking in the direction of the railend.
Parameter value should be kept consistent with the model size via Parameter script. Used for section bounding box offset of the component axis.

ac_railendProfileID integer

Index of the selected profile used for the railend. ARCHICAD provides the boundingbox size of the profile by the means of request options.

Parameters for Curtain Wall
Library parts can collaborate with ARCHICAD through values of parameters with predefined name and function. The list of such parameters
related to the Curtain Wall Tool follows below.

Miscellaneous

GDL Reference Guide 457

Curtain Wall Parameters set and read by ARCHICAD

Curtain Wall Frame parameters
ac_frameWidth length

The width of the curtain wall frame.
Compatibility: introduced in ARCHICAD 22.

ac_frameDepth length

The depth of the curtain wall frame.
Compatibility: introduced in ARCHICAD 22.

ac_frameBackDepth length

The curtain wall frame's back offset from panel centerline.
Compatibility: introduced in ARCHICAD 22.

ac_clampWidth length

The width of the curtain wall panel insertion gap.
Compatibility: before ARCHICAD 22 this parameter could only be set by ARCHICAD.

ac_clampDepth length

The depth of the curtain wall panel insertion gap.
Compatibility: before ARCHICAD 22 this parameter could only be set by ARCHICAD.

Curtain Wall Parameters set by ARCHICAD

Curtain Wall Frame parameters
ac_nConnectingPanels length

The number of panels connecting to the frame. In case of boundary frames this value is 1, otherwise 2.

ac_clampVector[2][2] length, array

The direction vectors of the connecting curtain wall panels. The (ac_clampVector[1][1]; ac_clampVector[1][2]) vector contains the (X; Y) vector of the panel with the smaller rotation
angle measured from local axis Y (counterclockwise, considering the positive direction of local axis X). In case of boundary frame the (ac_clampVector[2][1]; ac_clampVector[2][2])
vector contains the (X; Y) direction of the connecting panel, the other vector values are 0.

Miscellaneous

GDL Reference Guide 458

Curtain Wall Panel parameters
ac_panelCoords[][2] length, array

The X and Y coordinates of the curtain wall panel polygon measured on the insertion gap of the connecting frames in the local coordinate system. If such polygon does not exist, the
first dimension of this parameter is set to 1, containing values 0, 0.
Compatibility: invalid polygon geometry fallback to one node is introduced in ARCHICAD 22.

ac_clampFreeRegion[][2] length, array

The X and Y coordinates of the curtain wall panel polygon measured on the side of the connecting frames in the local coordinate system. If such polygon does not exist, the first dimension
of this parameter is set to 1, containing values 0, 0.
Compatibility: invalid polygon geometry fallback to one node is introduced in ARCHICAD 22.

ac_frameAxisCoords[][2] length, array

Compatibility: introduced in ARCHICAD 22.
The X and Y coordinates of the curtain wall panel polygon measured on the axis of the connecting frames in the local coordinate system.

Curtain Wall Junction parameters
ac_frameDirs[][3] length, array

The end coordinates of the connecting curtain wall frame axes.

ac_panelOffsets[] length, array

The clamp thicknesses of the connecting curtain wall panels.
Note: total thickness of the panel for Built-in panels.

ac_panelPresences[] boolean, array

Presence of the connecting curtain wall panels.

Curtain Wall Accessory parameters
ac_frameWidthLeft length

Reference frame contour width 1 (usually A/2)

ac_frameWidthRight length

Reference frame contour width 2 (usually A/2)

Miscellaneous

GDL Reference Guide 459

ac_frameWidthFront length

Reference frame contour length 1 (usually B/2)

ac_frameWidthBack length

Reference frame contour length 2 (usually B/2)

ac_accessoryFlipped boolean

Accessory flipped state. 0 - not flipped, 1 - flipped

ac_globalZDir[1][3] length, array

Vector of local Z axis in the global coordinate system

ac_cellAngle1 angle

The accessory's frame can be connected to maximum 2 cells. These cells are cell1 and cell2. Cell1 is the cell with the smaller rotation angle measured from local axis Y (counterclockwise,
considering the positive direction of local axis X). Parameter ac_cellAngle1 is the angle between cell1 and local axis Y.

ac_cellAngle2 angle

The accessory's frame can be connected to maximum 2 cells. These cells are cell1 and cell2. Cell2 is the cell with the greater rotation angle measured from local axis Y (counterclockwise,
considering the positive direction of local axis X). Parameter ac_cellAngle2 is the angle between cell2 and local axis Y.

ac_validCellAngle1 boolean

Defines if there is cell 1 or not

ac_validCellAngle2 boolean

Defines if there is cell 2 or not

Curtain Wall Frame Deprecated parameters
These parameters are still working in ARCHICAD's environment for compatibility reasons, but avoiding them is recommended during new
object creation.

gs_rightOffset length

The distance of the curtain wall frame's inner side from the boundary. In case of Outside Boundary its value is the frame width, in case of Inside Boundary its value is 0.

gs_originOffsetX length

The distance of the curtain wall frame's outer side from the boundary. In case of Outside Boundary its value is 0, in case of Inside Boundary its value is the frame width.

Miscellaneous

GDL Reference Guide 460

gs_frontOffset length

The distance of the curtain wall frame's front side from the centerline of the panel.

gs_originOffsetY length

The distance of the curtain wall frame's back side from the centerline of the panel.

ac_topConnPlane[4] length, array

The top cutplane position of the frame, defined in the local coordinate system of the library part.
ac_topConnPlane[1]: X component of the normal vector of top cutplane
ac_topConnPlane[2]: Y component of the normal vector of top cutplane
ac_topConnPlane[3]: Z component of the normal vector of top cutplane
ac_topConnPlane[4]: distance of top cutplane from frame origo

ac_bottomConnplane[4] length, array

The bottom cutplane position of the frame, defined in the local coordinate system of the library part.
ac_bottomConnplane[1]: X component of the normal vector of bottom cutplane
ac_bottomConnplane[2]: Y component of the normal vector of bottom cutplane
ac_bottomConnplane[3]: Z component of the normal vector of bottom cutplane
ac_bottomConnplane[4]: distance of bottom cutplane from frame origo

Curtain Wall Parameters read by ARCHICAD

Curtain Wall Panel and Frame parameters
AC_AutoSchematicModel boolean

Controls whether the Schematic representation of the Curtain Wall Panel or Frame set at Model View Options / Curtain Wall Options is handled by ARCHICAD.
Compatibility: introduced in ARCHICAD 22.

Miscellaneous

GDL Reference Guide 461

Curtain Wall Frame parameters
ac_iCWFrameType integer

Determines the type of frame
• 0 - Normal Frame
• 1 - Diagonal Corner
• 2 - Regular Double Corner
• 3 - Regular Block Corner
• 4 - Profiled Frame
The value of this parameter affects the Frame Type and Geometry Dialog and in case of the Regular Corner types, the Symbolic representation of the frame.
Compatibility: introduced in ARCHICAD 22.

ac_bButtGlazedFrame boolean

Determines the type of frame
• 0 - frame with cap
• 1 - butt-glazed frame
The value of this parameter affects the Frame Type and Geometry Dialog.
Compatibility: introduced in ARCHICAD 22.

ac_capProfileID profile

Index of the selected profile used for the curtain wall frame cap. If this parameter and the ac_beamProfileID parameter exist in the curtain wall frame library part, the calculation
of the frame and cap sizes is handled by ARCHICAD.
Note: This parameter only has effect on ARCHICAD if the ac_beamProfileID parameter - see the section called “Stair related parameters” - exists.
Compatibility: introduced in ARCHICAD 22.

ac_frameOffsetSide length

The distance of the frame side from the frame's origin measured on the panel centerline. The clamp depth is measured from this distance on the panel centerline.
Compatibility: introduced in ARCHICAD 22.

ac_CWFrameBuildMat building material

The index of the frame's building material. The Symbolic representation of the frame is drawn with the fill attributes of this building material.
Compatibility: introduced in ARCHICAD 22.

Miscellaneous

GDL Reference Guide 462

ac_CWFrameCutLinePen pen

The index of the frame's cut line pen. The contour line of the Symbolic representation of the frame is drawn with the set pen index.
Compatibility: introduced in ARCHICAD 22.

ac_CWFrameCutLineType linetype

The index of the frame's cut line type. The contour line of the Symbolic representation of the frame is drawn with the set line type index.
Compatibility: introduced in ARCHICAD 22.

Curtain wall panel parameters
ac_panel_type integer

Determines the type of panel for listing. 0 - Fixed, 1 - Door, 2 - Window

ac_openingDir integer

Determines the opening direction of doors and windows for listing. 0 - Fixed, 1 - Inside, 2 - Outside

ac_width length

Panel width for listing.

ac_nominalWidth length

Panel nominal width for listing.

ac_height length

Panel height for listing.

ac_nominalHeight length

Panel nominal height for listing.

ac_thickness length

Panel thickness for listing.

ac_originIsFrameCenter boolean

If the parameter is present and its value is true, the panel origin is at the center point of the starting (left) frame. Otherwise, the origin is at the starting point of the left clamp.

Miscellaneous

GDL Reference Guide 463

ac_aSizeIsWithClamp boolean

If the parameter is present and its value is true, ARCHICAD sets the A size as the distance between the frames plus the clamps' size. Otherwise, the A size is measured between
the frames.

Parameters for add-ons
Add-ons can get values from library parts through parameters with predefined name and function. The list of such parameters related to
ARCHICAD package add-ons follows below.

Parameters of Skylight add-on

Hole edge cut manipulation
ac_edge_lower_type integer

Cut type of the lower edge: 0 - Vertical, 1 - Perpendicular, 2 - Horizontal, 3 - Custom

ac_edge_lower_angle angle

Angle of the cut of the lower edge, if ac_edge_lower_type is 3. The value range is [1-179] degrees, 90 is the perpendicular case.

ac_edge_upper_type integer

Cut type of the upper edge: 0 - Vertical, 1 - Perpendicular, 2 - Horizontal, 3 - Custom

ac_edge_upper_angle angle

Angle of the cut of the upper edge, if ac_edge_upper_type is 3. The value range is [1-179] degrees, 90 is the perpendicular case.

Parameters of Corner Window add-on

Basic parameters of Corner Window objects
ac_cw_function boolean

Window place mode, controlled by the add-on. 0 - Window, 1 - Corner window

ac_corner_window boolean

Corner window mode selector, controlled by the object. 0 - Disable corner window mode, 1 - Enable corner window mode

Miscellaneous

GDL Reference Guide 464

ac_corner_angle angle

Angle between the connected walls.

ac_diff_con_wall_thk boolean

Always true (1). It is a historical feature showing whether the connected wall has a different thickness from the containing wall.

ac_con_wall_thk length

Thickness of the connected wall.

ac_cw_debug boolean

For internal usage only. Aspect of GDL programmers have no interest.

Wall skins data parameters of Corner Window objects (available from ARCHICAD 12)
ac_con_wall_skins_number integer

Number of skins in the connected wall. In case of solid walls it is zero.

ac_con_wall_skins_params length

Parameters of the connected composite wall skins. Same as the WALL_SKINS_PARAMS GDL global parameter of the owner wall.

ac_con_wall_direction_type integer

Connected wall flipped state; the flipped state of the wall, which means the adjustment of the wall body and the reference line: 0 - not flipped, 1 - flipped. (old meaning: 0 - Right,
1 - Left, 2 - Center (Right), 3 - Center (Left).)

Parameters of IFC add-on

Common basic parameters of Door and Window objects
ifc_LiningDepth length

Thickness of the door/window frame.

ifc_LiningThickness length

Width of the door/window frame.

ifc_TransomThickness length

Width of the transom.

Miscellaneous

GDL Reference Guide 465

IFC2x_ConstEnum integer / string

This parameter defines the basic types of construction of doors/windows.

IfcDoorStyleConstructionEnum categoryifc_ConstEnum (integer)
parameter value

IFC2x_ConstEnum (string)
parameter value IfcWindowStyleConstructionEnum category

0 Not Defined NOTDEFINED

1 Aluminum ALUMINIUM

2 High Grade Steel HIGH_GRADE_STEEL

3 Steel STEEL

4 Wood WOOD

5 Aluminum Wood ALUMINIUM_WOOD

6 Aluminum Plastic ALUMINIUM_PLASTIC

7 Plastic PLASTIC

8 User Defined USERDEFINED

Miscellaneous

GDL Reference Guide 466

Basic parameters of Door objects
ifc_optype - Doors integer / string

Door Opening Type, controlled by the IFC_optype_door.gsm macro.

ifc_optype (integer)
parameter value

ifc_optypestr (string)
parameter value

IfcDoorStyleOperationEnum category

0 Not Defined NOTDEFINED

SINGLE_SWING_LEFT
1 Single Door Single Swing

SINGLE_SWING_RIGHT

2 Double Door Single Swing DOUBLE_DOOR_SINGLE_SWING

DOUBLE_SWING_LEFT
3 Single Door Double Swing

DOUBLE_SWING_RIGHT

4 Double Door Double Swing DOUBLE_DOOR_DOUBLE_SWING

DOUBLE_DOOR_SINGLE_SWING_OPPOSITE_LEFT
5 Double Door Single Swing Opposite

DOUBLE_DOOR_SINGLE_SWING_OPPOSITE_RIGHT

SLIDING_TO_LEFT
6 Single Door Sliding

SLIDING_TO_RIGHT

7 Double Door Sliding DOUBLE_DOOR_SLIDING

FOLDING_TO_LEFT
8 Single Door Folding

FOLDING_TO_RIGHT

9 Double Door Folding DOUBLE_DOOR_FOLDING

10 Revolving REVOLVING

11 Rolling Up ROLLINGUP

12 Other USERDEFINED

13 Swing Fixed SWING_FIXED Compatibility: introduced in ARCHICAD 23.

ifc_LiningOffset length

Offset of the door frame.

Miscellaneous

GDL Reference Guide 467

ifc_CasingDepth length

Thickness of the door casing.

ifc_CasingThickness length

Width of the door casing.

ifc_ThresholdDepth length

Depth of the door threshold.

ifc_ThresholdThickness length

Thickness of the door threshold.

ifc_ThresholdOffset length

Offset of the door threshold.

ifc_TransomOffset length

Offset of the transom.

Miscellaneous

GDL Reference Guide 468

ifc_DoorPanel length - array

ifc_DoorPanel[x][1] - thickness of the door sash.
ifc_DoorPanel[x][2] - width of the door sash.

ifc_DoorPanel[x][3] parameter value IfcDoorPanelOperationEnum category

0 NOTDEFINED

1 SWINGING

2 DOUBLE_ACTING

3 SLIDING

4 FOLDING

5 REVOLVING

6 ROLLINGUP

7 USERDEFINED

ifc_DoorPanel[x][4] parameter value IfcDoorPanelPositionEnum category

0 NOTDEFINED

1 LEFT

2 MIDDLE

3 RIGHT

Miscellaneous

GDL Reference Guide 469

Basic parameters of Window objects
ifc_optype - Windows integer / string

Window Opening Type, controlled by the IFC_optype_window.gsm macro.

ifc_optype (integer)
parameter value

ifc_optypestr (string)
parameter values

IfcWindowStyleOperationEnum category

0 Not Defined NOTDEFINED

1 Single SINGLE_PANEL

2 Double Vertical DOUBLE_PANEL_VERTICAL

3 Double Horizontal DOUBLE_PANEL_HORIZONTAL

4 Triple Vertical TRIPLE_PANEL_VERTICAL

5 Triple Horizontal TRIPLE_PANEL_HORIZONTAL

6 Triple Bottom TRIPLE_PANEL_BOTTOM

7 Triple Top TRIPLE_PANEL_TOP

TRIPLE_PANEL_LEFT
8 Triple Left

TRIPLE_PANEL_RIGHT

TRIPLE_PANEL_RIGHT
9 Triple Right

TRIPLE_PANEL_RIGHT

10 Other USERDEFINED

ifc_MullionThickness ifc_MullionThickness - length

Width of the mullion.

ifc_FirstMullionOffset ifc_FirstMullionOffset - length

Offset of the mullion centerline.

ifc_SecondMullionOffset ifc_SecondMullionOffset - length

Offset of the mullion centerline of the second mullion.

ifc_FirstTransomOffset ifc_FirstTransomOffset - length

Offset of the transom centerline.

Miscellaneous

GDL Reference Guide 470

ifc_SecondTransomOffset ifc_SecondTransomOffset - length

Offset of the transom centerline for the second mullion.

Miscellaneous

GDL Reference Guide 471

ifc_WindowPanel length - array

ifc_WindowPanel[x][1] - thickness of the window sash.
ifc_WindowPanel[x][2] - width of the window sash.

ifc_WindowPanel[x][3] parameter value IfcWindowPanelOperationEnum category

0 NOTDEFINED

1 SIDEHUNGRIGHTHAND

2 SIDEHUNGLEFTHAND

3 TILTANDTURNRIGHTHAND

4 TILTANDTURNLEFTHAND

5 TOPHUNG

6 BOTTOMHUNG

7 PIVOTHORIZONTAL

8 PIVOTVERTICAL

9 SLIDINGHORIZONTAL

10 SLIDINGVERTICAL

11 REMOVABLECASEMENT

12 FIXEDCASEMENT

13 OTHEROPERATION

ifc_WindowPanel[x][4] parameter value IfcWindowPanelPositionEnum category

0 NOTDEFINED

1 LEFT

2 MIDDLE

3 RIGHT

4 BOTTOM

5 TOP

Miscellaneous

GDL Reference Guide 472

Basic parameters of Transport Elements
ifc_optype - Transport Elements integer

Type choice for Transport Element. Compatibility: deprecated since ARCHICAD 23.

ifc_optype (integer) parameter value IfcTransportElementTypeEnum category

0 NOTDEFINED

1 ELEVATOR

2 ESCALATOR

3 MOVINGWALKWAY

4 USERDEFINED

Basic parameters of Lift objects
ifc_CapacityByWeight realnum

Capacity of the transport element measured by weight. Compatibility: deprecated since ARCHICAD 23.

ifc_CapacityByNumber integer

Capacity of the transportation element measured in number of persons. Compatibility: deprecated since ARCHICAD 23.

Miscellaneous

GDL Reference Guide 473

Basic parameters of Stair objects
ifc_StairType integer

The basic configuration of the stair type in terms of the number of stair flights and the number of landings, controlled by the StairMaker add-on for the built-in stairs.

0 Not Defined

1 StraightRunStair

2 TwoStraightRunStair

3 QuarterWindingStair

4 QuarterTurnStair

5 HalfWindingStair

6 HalfTurnStair

7 TwoQuarterWindingStair

8 TwoQuarterTurnStair

9 ThreeQuarterWindingStair

10 ThreeQuarterTurnStair

11 SpiralStair

12 DoubleReturnStair

13 CurvedRunStair

14 TwoCurvedRunStair

15 OtherOperation

ifc_NumberOfRiser integer

Total number of risers in the stair.

ifc_NumberOfTreads integer

Total number of treads in the stair.

ifc_RiserHeight length

Vertical distance from tread to tread. The riser height is supposed to be equal for all steps of a stair or stair flight.

Miscellaneous

GDL Reference Guide 474

ifc_TreadLength length

Horizontal distance from the front of the tread to the front of the next tread. The tread length is supposed to be equal for all steps of the stair or stair flight at the walking line.

Miscellaneous

GDL Reference Guide 475

Basic parameters of MEP elements
ifc_subtype integer

1 IfcAirTerminalBoxType 21 IfcHeatExchangerType 41 IfcElectricFlowStorageDeviceType 61 IfcUnitaryControlElementType

2 IfcAirTerminalType 22 IfcHumidifierType 42 IfcElectricGeneratorType 62 IfcBurnerType

3 IfcAirToAirHeatRecoveryType 23 IfcPipeFittingType 43 IfcSpaceHeaterType 63 IfcEngineType

4 IfcBoilerType 24 IfcPipeSegmentType 44 IfcElectricMotorType 64 IfcSolarDeviceType

5 IfcChillerType 25 IfcPumpType 45 IfcElectricTimeControlType 65 IfcElectricDistributionBoardType

6 IfcCoilType 26 IfcSpaceHeaterType 46 this value is skipped 66 IfcCableFittingType

7 IfcCompressorType 27 IfcTankType 47 IfcJunctionBoxType 67 IfcAudioVisualApplianceType

8 IfcCondenserType 28 IfcTubeBundleType 48 IfcLampType 68 IfcCommunicationsApplianceType

9 IfcCooledBeamType 29 IfcUnitaryEquipmentType 49 IfcLightFixtureType 69 IfcMedicalDeviceType

10 IfcCoolingTowerType 30 IfcValveType 50 IfcMotorConnectionType 70 IfcInterceptorType

11 IfcDamperType 31 IfcVibrationIsolatorType 51 IfcOutletType

12 IfcDuctFittingType 32 IfcFireSuppressionTerminalType 52 IfcProtectiveDeviceType

13 IfcDuctSegmentType 33 IfcSanitaryTerminalType 53 IfcSwitchingDeviceType

14 IfcDuctSilencerType 34 IfcStackTerminalType 54 IfcTransformerType

15 IfcEvaporativeCoolerType 35 IfcWasteTerminalType 55 IfcActuatorType

16 IfcEvaporatorType 36 IfcCableCarrierFittingType 56 IfcAlarmType

17 IfcFanType 37 IfcCableCarrierSegmentType 57 IfcControllerType

18 IfcFilterType 38 IfcCableSegmentType 58 IfcFlowInstrumentType

19 IfcFlowMeterType 39 IfcElectricApplianceType 59 IfcSensorType

20 IfcSpaceHeaterType 40 this value is skipped 60 IfcProtectiveDeviceTrippingUnitType

Compatibility: changes in ARCHICAD 23
• new types 60 to 70
• 20 IfcGasTerminalType renamed to IfcSpaceHeaterType
• 43 IfcElectricHeaterType renamed to IfcSpaceHeaterType

Miscellaneous

GDL Reference Guide 476

Parameters for Text Handling
Before ARCHICAD 22, selected Text Style controls were available for annotation tools (therefore library parts) spread on various settings
dialog panels. Starting from ARCHICAD 22, a standard set of text handling controls became part of every annotation dialog in form of a
dedicated "Text Style" panel.
Library parts belonging to such tools have access to these functions by using the following fix named optional parameters.
Starting from ARCHICAD 22, the locking/hiding of the corresponding ARCHICAD interface controls (if exist) is an option by using LOCK
and HIDEPARAMETER commands via the parameter script of the library part, combined with "Enable hide/lock of specific fix named optional
parameters" setting (see "Details/Compatibility Options" dialog of the object in the Library Part Editor).
For tool/version history, refer to the compatibility notes of each parameter.
By default, the following parameters are considered available and compatible before ARCHICAD 22, while exceptions are mentioned separately.

AC_TextFont_1 string

Name of the currently selected/stored Font Type.
Compatibility: introduced in ARCHICAD 22 for Label objects. The similar global variable "LABEL_FONT_NAME" is considered deprecated since.

AC_TextSize_1 real

Currently set/stored Font Size value in mm.
Compatibility: introduced in ARCHICAD 22 for Label and Zone objects. The similar global variable "LABEL_TEXT_SIZE" is considered deprecated in Labels. In Zone
objects, the "ROOM_LSIZE" fix named optional parameter is also considered deprecated since.

AC_TextStyle_1 integer

Font Style value mask. Can be used as direct input parameter for DEFINE STYLE{2} or UI_TEXTSTYLE_INFIELD.
values:

values = j1 + 2*j2 + 4*j3 + 128*j8, where each j can be 0 or 1.
j1: bold,
j2: italic,
j3: underline,
j8: strikethrough.
If AC_TextStyle_1 = 0, then style is normal.

Compatibility: introduced in ARCHICAD 22 for Zone and Label objects. The similar global variable "LABEL_FONT_STYLE2" is considered deprecated in Labels.

Miscellaneous

GDL Reference Guide 477

AC_TextPen_1 integer

Index of the currently selected/stored Text Pen.
Compatibility: introduced in ARCHICAD 22 for Zone and Label objects. The similar global variable "LABEL_TEXT_PEN" is considered deprecated since in Labels.

The following set of text handling parameters are available for all annotation-type library parts. In Labels, the corresponding global variables
are considered deprecated. See the section called “Deprecated Label Global Variables” for the full list of out-of-date label globals.

AC_TextAlignment_1 integer

Alignment of the text.
1 - left aligned, 2 - center aligned, 3 - right aligned, 4 - full justified
Compatibility: introduced in ARCHICAD 22. In Labels, the similar global variable "LABEL_TEXT_ALIGN" is considered deprecated since ARCHICAD 22.

AC_TextLeading_1 real

Line spacing factor of the text.
Compatibility: introduced in ARCHICAD 22. In Labels, the similar global variable "LABEL_TEXT_LEADING" is considered deprecated since ARCHICAD 22.

AC_TextCharWidthFactor_1 real

Character width factor of the text.
Compatibility: introduced in ARCHICAD 22. In Labels, the similar global variable "LABEL_TEXT_WIDTH_FACT" is considered deprecated since ARCHICAD 22.

AC_TextCharSpaceFactor_1 real

Character spacing factor of the text.
Compatibility: introduced in ARCHICAD 22. In Labels, the similar global variable "LABEL_TEXT_CHARSPACE_FACT" is considered deprecated since ARCHICAD
22.

Parameters for Labels

Parameters set or read by ARCHICAD
The following set of label parameters were all introduced in ARCHICAD 22, so the parallel global variables are considered deprecated. See the
section called “Deprecated Label Global Variables” for the full list of out-of-date label globals.
Starting from ARCHICAD 22, the locking/hiding of the corresponding ARCHICAD interface controls (if exist) is an option by using LOCK
and HIDEPARAMETER commands via the parameter script of the library part, combined with "Enable hide/lock of specific fix named optional
parameters" setting (see "Details/Compatibility Options" dialog of the object in the Library Part Editor).

Miscellaneous

GDL Reference Guide 478

AC_bLabelAlwaysReadable Boolean

1 - "Always Readable" is checked on "Label Settings/Text Style" panel, 0 otherwise
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_ALWAYS_READABLE" is considered deprecated since ARCHICAD 22.

AC_bLabelTextWrap Boolean

1 - "Wrap Text" is checked on "Label Settings/Text Style" panel, 0 otherwise
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_TEXT_WRAP" is considered deprecated since ARCHICAD 22.

AC_bLabelOpaqueFill Boolean

1 - "Opaque" is checked on "Label Settings/Text Style" panel, 0 otherwise
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_TEXT_BG_PEN" is considered deprecated since ARCHICAD 22.

AC_LabelTextBgrPen integer

Contains the index of the selected Text Fill Pen.
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_TEXT_BG_PEN" is considered deprecated since ARCHICAD 22.

AC_bLabelFrame Boolean

1 - "Frame" is checked, 0 - "Frame" is unchecked.
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_FRAME_ON" is considered deprecated since ARCHICAD 22.

AC_LabelFrameOffset length

Frame offset value according to "Label Settings/Text Style" panel.
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_FRAME_OFFSET" is considered deprecated since ARCHICAD 22.

AC_LabelPointerPen pen

Contains the index of the selected Pointer Line Pen.
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_ARROW_PEN" is considered deprecated since ARCHICAD 22.

AC_LabelPointerLineType line type

Contains the index of the selected Pointer Line Type.
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_ARROW_LINETYPE" is considered deprecated since ARCHICAD 22.

Miscellaneous

GDL Reference Guide 479

AC_LabelPointerConnection integer

Pointer connection position.
0 - middle, 1 - top, 2 - bottom, 3 - bottom right
Compatibility: introduced in ARCHICAD 22. The similar global variable "LABEL_ANCHOR_POS" is considered deprecated since ARCHICAD 22.

AC_LabelOrientation integer

Label orientation type value of "Label Orientation" settings in "Symbol Label" panel. "LABEL_ROTANGLE" value may change according to orientation settings.
1 - parallel, 2 - perpendicular, 3 - vertical, 4 - horizontal, 5 - custom angle
Compatibility: introduced in ARCHICAD 22.
Extended LOCK/HIDEPARAMETER feature is not available for this parameter. Masking of the corresponding interface control values is set by
"AC_DisableLabelOrientationVal". The parameter defines the library part default value.

Parameters read by ARCHICAD
AC_DisableLabelOrientationVal integer

Label orientation ("AC_LabelOrientation) type value mask.
bitset: Disable the following options in "Symbol Label" dialog panel for "Label Orientation":

bitset = j1 + 2*j2 + 4*j3 + 8*j4, where each j can be 0 or 1.
j1: "Parallel",
j2: "Perpendicular",
j3: "Vertical",
j4: "Horizontal".
"Custom" type cannot be disabled.

Compatibility: introduced in ARCHICAD 22.

ac_bDisableLabelFrameDisplay boolean

Compatibility: introduced in ARCHICAD 20.
Hides the built-in rectangular frame drawing around the Label Symbol in case of the built-in Pointer and Frame is set, enabling the user to script custom shaped frame.

Miscellaneous

GDL Reference Guide 480

ac_bCustomPointerConnection boolean

Compatibility: introduced in ARCHICAD 20.
Controls the automatic Pointer Connections of the Label Symbol in case of the built-in Pointer is set. If this parameter is set to ON, 6 hotspots can be defined in the 2D script for the
custom pointer connection in accordance with the built-in types. These hotspots should have fix ID-s from 1 to 6. The ID's indicate the following connection positions:
If the Pointer is on the left side of the Label Symbol:
• 1: left top connection
• 3: left middle connection
• 5: left bottom connection
• 6: right bottom connection
If the Pointer is on the right side of the Label Symbol:
• 2: right top connection
• 4: right middle connection
• 6: right bottom connection
• 5: left bottom connection

Deprecated parameters

Deprecated Beam/Column parameters - available for listing and labels only
From ARCHICAD 23 these values are available in BEAM_SEGMENT_INFO and COLU_SEGMENT_INFO global variables with
uniformized value references. See also the section called “Deprecated Beam/Column Global Variables - available for listing and labels
only”. For compatibility, they are still available on homogeneous, straight or horizontally curved Beams and on homogeneous Columns
(GLOB_ELEM_TYPE = 12 or 6).

ac_colu_crosssection_type cross-section type of the column (integer)

 Column Segment (27) Single-segment Column (6) Multi-segment Column (6)

1 - rectangular, 2 - round, 3 - complex profiled

ac_beam_crosssection_type cross-section type of the beam (integer)

 Beam Segment (28) Single-segment Beam (12) Multi-segment Beam (12)

1 - rectangular, 2 - complex profiled

Miscellaneous

GDL Reference Guide 481

Deprecated Zone Stamp parameters
ROOM_LSIZE real

Font size of text in mm.
Compatibility: deprecated since ARCHICAD 22. Use AC_TextSize_1 instead.

ac_disable_controls integer

This parameter can control the visibility of the Font Size ("ROOM_LSIZE") input area of the Zone Stamp settings dialog: 0 or the object doesn't have the parameter - show Font
Size, 1 - hide Font Size (therefore allowing extra space for the parameter list)
Compatibility: inactive since ARCHICAD 22. The "Font Size" input control has moved to the "Text Style" panel, its visibility is controlled by LOCK/HIDEPARAMETER
commands.

REQUEST OPTIONS
n = REQUEST (question_name, name_or_index, variable1 [, variable2, ...])
n = REQUEST{2} (question_name, name_or_index, name, variable1 [, variable2, ...])
n = REQUEST{3} (question_name, name, name_or_index_array, variable1 [, variable2, ...])
n = REQUEST{4} (question_name, name_or_index, index, name, variable1 [, variable2, ...])
The first parameter represents the question string while the second (or more) represents the object of the question (if it exists). The other
parameters are variable names in which the return values (the answers) are stored. The function’s return value is the number of the answer (in
the case of a badly formulated question or a nonexistent name, the value will be 0).
ARCHICAD identifies the order and number of the input parameters by either the version of the REQUEST command, or the exact name (as
string constant) of the request option. This means that using the first or both of the following options is the safest:
• name of the request is always a constant string
• version is added to the command

Request Parameter Script Compatibility
The use of most requests in parameter scripts (or master scripts run as parameter script) can result in unstable returned values, therefore should
be avoided.
Compatibility up to ARCHICAD 19: The use of most requests in parameter scripts (or master scripts run as parameter script) could result in unreliable returned values.
Compatibility starting from ARCHICAD 20: the following applies in parameter script cases:
• the request expression will always have 0 as success return value
• the requested values will contain a type-matching default only (empty string or 0)

Miscellaneous

GDL Reference Guide 482

Using restricted requests in the parameter script will also generate GDL warnings starting from ARCHICAD 19.
To check the parameter script compatibility, refer to the tables below.:
Legend:

works without restriction

works (with additional warning)

does not work: expression returns 0, while containing dummy type-
matching defaults in returned variables (empty string or 0) - with
additional warning

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

ANCESTRY_INFO

ANGULAR_DIMENSION

ANGULAR_LENGTH_DIMENSION

AREA_DIMENSION

ASSOCEL_PROPERTIES

ASSOCLP_NAME

ASSOCLP_PARVALUE

ASSOCLP_PARVALUE_WITH_DESCRIPTION

AUTOTEXT_LIST - -

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

BUILDING_MATERIAL_INFO

Miscellaneous

GDL Reference Guide 483

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

CALC_ANGLE_UNIT

CALC_AREA_UNIT

CALC_LENGTH_UNIT

CALC_VOLUME_UNIT

CLASS_OF_FILL

CLEAN_INTERSECTIONS

COMPONENT_PROJECTED_AREA

COMPONENT_VOLUME

CONFIGURATION_NUMBER - -

CONSTR_FILLS_DISPLAY

CUSTOM_AUTO_LABEL

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

DATETIME

DOOR_SHOW_DIM

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

ELEVATION_DIMENSION

Miscellaneous

GDL Reference Guide 484

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

FLOOR_PLAN_OPTION

FONTNAMES_LIST

FULL_ID_OF_PARENT -

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

HEIGHT_OF_STYLE

HOME_STORY

HOME_STORY_OF_OPENING

HOMEDB_INFO

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

ID_OF_MAIN

INTERNAL_ID

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

LAYOUT_LENGTH_UNIT

LAYOUT_TEXT_SIZE_UNIT

LEVEL_DIMENSION

LINEAR_DIMENSION

Miscellaneous

GDL Reference Guide 485

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

MATCHING_PROPERTIES

MATERIAL_INFO

MODEL_LENGTH_UNIT

MODEL_TEXT_SIZE_UNIT

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

NAME_OF_FILL

NAME_OF_LINE_TYPE

NAME_OF_LISTED

NAME_OF_MACRO

NAME_OF_MAIN

NAME_OF_MATERIAL

NAME_OF_PLAN

NAME_OF_PROGRAM

NAME_OF_STYLE

Miscellaneous

GDL Reference Guide 486

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

PEN_OF_RGB

PROGRAM_INFO

PROPERTIES_OF_PARENT - -

PROPERTY_NAME - -

PROPERTY_VALUE_OF_PARENT - -

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

RADIAL_DIMENSION

REFERENCE_LEVEL_DATA

RGB_OF_MATERIAL

RGB_OF_PEN

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

SILL_HEIGHT_DIMENSION

STORY

STORY_INFO

STYLE_INFO

SUM_WITH_ROUNDING - -

Miscellaneous

GDL Reference Guide 487

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

TEXTBLOCK_INFO

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

VIEW_ROTANGLE

WINDOW_DOOR_DIMENSION

WINDOW_DOOR_SHOW_DIM

WINDOW_DOOR_ZONE_RELEV

WINDOW_DOOR_ZONE_RELEV_OF_OWNER

WINDOW_SHOW_DIM

WORKING_ANGLE_UNIT

WORKING_LENGTH_UNIT

Compatibility in Parameter Script ARCHICAD 18 ARCHICAD 19 ARCHICAD 20

ZONE_CATEGORY

ZONE_COLUS_AREA

ZONE_RELATIONS

ZONE_RELATIONS_OF_OWNER

Details of Requests
n = REQUEST ("Name_of_program", "", program_name)

Miscellaneous

GDL Reference Guide 488

Returns in the given variable the name of the program, e.g., "ARCHICAD". Expression returns 0 and contains dummy return values (emtpy string or
0) if used in parameter script, causing additional warning.

Example 1: Printing the name of the program
n = REQUEST ("Name_of_program", "", program_name)
PRINT program_name

n = REQUEST ("Name_of_macro", "", my_name)
n = REQUEST ("Name_of_main", "", main_name)
After executing these function calls, the my_name variable will contain the name of the macro, while main_name will contain the name of the
main macro (if it doesn’t exist, empty string).
n = REQUEST ("ID_of_main", "", id_string)
For library parts placed on the floor plan, returns the identifier set in the tool’s settings dialog box in the id_string variable (otherwise empty
string). Not working on annotation elements (e.g. Label, D/W Marker, Zone Stamp). Expression returns 0 and contains dummy return values (emtpy
string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Full_ID_of_parent", "", id_string)
For annotation elements linked or hotlinked on the floor plan, returns all identifiers (Master ID) of the linked modules and the parent library
parts’ identifier set in the tool’s settings dialog box in the id_string variable (otherwise empty string). Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Name_of_plan", "", name)
Returns in the given variable the name of the current project. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.
n = REQUEST ("Story", "", index, story_name)
Returns in the index and story_name variables the index and the name of the current story. Expression returns 0 and contains dummy return values
(emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Home_story", "", index, story_name)
Returns in the index and story_name variables the index and the name of the home story.
n = REQUEST ("Home_story_of_opening", "", index, story_name)
Returns the index and the name of the home story of the opening in the index and story_name variables. The home story is the first story,
where the opening is visible. Can be used in scripts of doors, windows, wallends, corner windows and skylights, and in the script of their labels
and markers. Causes warning if used in parameter script.

Miscellaneous

GDL Reference Guide 489

n = REQUEST ("Story_info", expr, nStories,
 index1, name1, elev1, height1 [,
 index2, name2, ...])
Returns the story information in the given variables: number of stories and story index, name, elevation, height to next successively. If expr is a
numerical expression, it means a story index: only the number of stories and the information on the specified story is returned. If expr is a string
expression, it means that information on all stories is requested. The return value of the function is the number of successfully retrieved values.

Example 2:
DIM t[]
n = REQUEST ("STORY_INFO", "", nr, t)
FOR i = 1 TO nr
 nr = STR ("%.0m", t [4 * (i - 1) + 1])
 name = t [4 * (i - 1) + 2]
 elevation = STR ("%m", t [4 * (i - 1) + 3])
 height = STR ("%m", t [4 * (i - 1) + 4])
 TEXT2 0, -i, nr + "," + name + "," + elevation + "," + height
NEXT i

With the following requests, you can learn the dimension formats set in the Options/Project Preferences/Dimensions and Calculation Units
& Rules dialog boxes. These requests return a format string that can be used as the first parameter in the STR () function.
n = REQUEST ("Linear_dimension", "", format_string)
n = REQUEST ("Angular_dimension", "", format_string)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Angular_length_dimension", "", format_string)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Radial_dimension", "", format_string)
Causes warning if used in parameter script.
n = REQUEST ("Level_dimension", "", format_string)
Causes warning if used in parameter script.
n = REQUEST ("Elevation_dimension", "", format_string)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Window_door_dimension", "", format_string)
n = REQUEST ("Sill_height_dimension", "", format_string)

Miscellaneous

GDL Reference Guide 490

n = REQUEST ("Area_dimension", "", format_string)
n = REQUEST ("Calc_length_unit", "", format_string)
n = REQUEST ("Calc_area_unit", "", format_string)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Calc_volume_unit", "", format_string)
n = REQUEST ("Calc_angle_unit", "", format_string)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Example 3:
format = "" num = 60.55
n = REQUEST ("Angular_dimension", "",format)!"%.2dd"
TEXT2 0, 0, STR (format, num)!60.55

n = REQUEST ("Clean_intersections", "", state)
Returns the state of the Clean Wall & Beam Intersections feature (1 when turned on, 0 when off) Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Zone_category", "", name, code)
For zones, returns the name and the code string of the current zone category.
n = REQUEST ("Zone_relations", "",
 category_name, code, name, number
 [, category_name2, code2, name2, number2])
Returns in the given variables the zone category name and code and the name and number of the zone where the library part containing this
request is located. For doors and windows, there can be a maximum of two zones. The return value of the request is the number of successfully
retrieved values (0 if the library part is not inside any zone).
n = REQUEST ("Zone_relations_of_owner", "",
 category_name, code, name, number
 [, category_name2, code2, name2, number2])
Returns in the given variables the category name & code and the zone name & number of the zone where the owner of the object is located.
So, it is meaningful, if the library part has owner (door-window labels and door-window markers, etc.). In case of a door label, its owner is the
door. For doors and windows, there can be a maximum of two related zones. The return value of the request is the number of successfully
retrieved values (0 if the object has no owner, or its owner is not inside any zone). Causes warning if used in parameter script.
n = REQUEST ("Zone_colus_area", "", area)

Miscellaneous

GDL Reference Guide 491

Returns in the area variable the total area of the columns placed in the current zone. Effective only for Zone Stamps. Available only for
compatibility reasons. It is recommended to use quantities set in Zone Stamp fix parameters. Expression returns 0 and contains dummy return values
(emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Custom_auto_label", "", name)
Returns in the name variable the name of the custom auto label of the library part or an empty string if it does not exist. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Rgb_of_material", name, r, g, b)
n = REQUEST ("Rgb_of_pen", penindex, r, g, b)
n = REQUEST ("Pen_of_RGB", "r g b", penindex)
Like the REQ() function (but in just one call), returns in the specified variables the value of the r, g, b components of the material and pen,
or the index of the pen corresponding to the given RGB values. All 3 expressions return 0 containing dummy return values (emtpy string or 0) if used
in parameter script, causing additional warning.
n = REQUEST ("Height_of_style", name, height [, descent, leading])
Returns in the given variables the total height of the style measured in millimeters (height in meters is height / 1000 * GLOB_SCALE); the
descent (the distance in millimeters from the text base line to the descent line) and the leading (the distance in millimeters from the descent
line to the ascent line).
n = REQUEST ("Style_info", name, fontname [, size, anchor, face_or_slant])
Returns information in the given variables on the previously defined style (see style parameters at the DEFINE STYLE command). Can be useful in
macros to collect information on the style defined in a main script. Causes warning if used in parameter script.
n = REQUEST ("Name_of_material", index, name)
Returns in the variable the material name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.
n = REQUEST ("Name_of_building_material", index, name)
Returns in the variable the building material name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used
in parameter script, causing additional warning.
n = REQUEST ("Name_of_fill", index, name)
Returns in the name variable the fill name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.
n = REQUEST ("Name_of_line_type", index, name)
Returns in the given variable the line name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in
parameter script, causing additional warning.

Miscellaneous

GDL Reference Guide 492

n = REQUEST ("Name_of_style", index, name)
Returns in the given variable the name of the style identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if
used in parameter script, causing additional warning.
If index < 0, it refers to a material, fill, line type or style defined in the GDL script or the MASTER_GDL file. A call of a request with index
= 0 returns in the variable the name of the default material or line type. (Empty string for fill and style.)
The return value of the request is the number of successfully retrieved values (1 if no error occurred, 0 for error when the index is not valid).
n = REQUEST ("WINDOW_DOOR_SHOW_DIM", "", show)
Before 9.0 returns 1 in the show variable if Options/Display Options/Doors & Windows is set to "Show with Dimensions", 0 otherwise. Since
9.0 display options were split to separate Door and Window display options, so for compatibility reasons ARCHICAD checks if the request
is used in a Window (or marker of a Window) or a Door (or marker of a Door) and automatically returns the corresponding display option.
In other cases (symbol, lamp, label) the Window option is returned. Can be used to hide/show custom dimensions according to the current
Display Options. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Since 9.0 the "window_show_dim", and the "door_show_dim" separate requests are available.
n = REQUEST ("window_show_dim", "", show)
Returns 1 in the show variable if in the Model View Options/Window options the "with Markers" is checked, 0 otherwise. Expression returns 0
and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("door_show_dim", "", show)
Returns 1 in the show variable if in the Model View Options/Door options the "with Markers" is checked, 0 otherwise. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("name_of_listed", "", name)
Returns in the name variable the name of the library part associated with the property type library part containing this request. For elements
(Walls, Slabs, etc.), the name is an empty string. Causes warning if used in parameter script.
n = REQUEST ("window_door_zone_relev", "", out_direction)
Effective only for Doors and Windows. Use it as complement to the "zone_relations" request. Returns 1 in the out_direction variable if the
Door/Window opening direction is in that of the first room identified by the "zone_relations" request, 2 if the opening direction is towards the
second room. It also returns 2 if there is only one room and the opening direction is to the outside. Causes warning if used in parameter script.
n = REQUEST ("window_door_zone_relev_of_owner", "", out_direction)
Effective only if the library part’s parent is a door or a window (markers, labels). Use it as a complement to the "zone_relations_of_owner"
request. Returns 1 in the out_direction variable if the parent’s opening direction is in that of the first zone identified by the zone relations type
requests, 2 if the opening direction is towards the second zone. It also returns 2 if there is only one zone and the opening direction is to the
outside. Causes warning if used in parameter script.

Miscellaneous

GDL Reference Guide 493

n = REQUEST ("matching_properties", type, name1, name2, ...)
If type = 1, returns in the given variables individually associated property library part names, otherwise property library part names associated
by criteria. If used in an associative label, the function returns the properties of the element the label is associated with. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("Working_length_unit", "", format_string)
n = REQUEST ("Working_angle_unit", "", format_string)
With these requests, the user can get the working unit formats as set in the Options > Project Preferences > Working Units dialog box. They
return a format string that can be used as the first parameter in the STR () function. The requests both work when interpreting the user interface
script, but "Working_angle_unit" causes warning if used in parameter script.
n = REQUEST ("Model_length_unit", "", format_string)
n = REQUEST ("Layout_length_unit", "", format_string)
With these requests, the user can get the layout and the model unit formats as set in the Options > Project Preferences > Working Units dialog
box. They return a format string that can be used as the first parameter in the STR () function. Both expressions return 0 containing dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning. Both work in User Interface Script only.
n = REQUEST ("Model_text_size_unit", "", format_string)
n = REQUEST ("Layout_text_size_unit", "", format_string)
With these requests, the user can get the layout and the model text size formats. They return a format string that can be used as the first
parameter in the STR () function. The requests cause warning if used in parameter script.
n = REQUEST ("Properties_Of_Parent", propertyType, parentProperties)
Returns the properties of the parent object. All properties are returned in one array with the following form: ID, type, group, name. Can be
used only in labels. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Core property: [id, "", "", PropertyName]
AC property: [guid, "", "GroupName", PropertyName]
IFC property: [id, "IFC", "GroupName", PropertyName]
Classification: [guid, "Classification", "", ClassificationSystemName]
Profile parameter: [guid, "", "Profile Parameters", ParameterName]

propertyType: keyword defining the type of the requested properties. Empty string retruns all types of properties. Possible values:
"COREPROPERTY"
"ACPROPERTY"
"IFCPROPERTY"
"CLASSIFICATION"
"PROFILEPARAMETER"

Miscellaneous

GDL Reference Guide 494

Compatibility: the request is introduced in ARCHICAD 20. The property type options and the Classification property type are introduced in ARCHICAD 21,
the Profile parameter property type is introduced in ARCHICAD 22.

Example 4:
DIM parentProperties[]
n = REQUEST ("Properties_Of_Parent", "", parentProperties)
! parentProperties = [Id1, TypeName1, GroupName1, PropertyName1,
 Id2, TypeName2, GroupName2, PropertyName2,
 ...
 Idn, TypeNamen, GroupNamen, PropertyNamen]

n = REQUEST ("Property_Value_Of_Parent", "id", type, dim1, dim2, propertyValues)
Returns value array of the selected property. Can be used only in labels. Expression returns 0 and contains dummy return values (emtpy string or 0) if
used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 20.
id: the ID of the selected property (string).
type: the type of the selected property value.
1: boolean
2: integer
3: real number
4: string
5: length
6: area
7: volume
8: angle

Compatibility: length, area, volume and angle types are introduced in ARCHICAD 22.
dim1, dim2: the dimensions of the propertyValues array.
dim1 = 0, dim2 = 0: simple, scalar value.
dim1 > 0, dim2 > 0: list of values.

Example 5:
DIM propertyValues[]
n = REQUEST ("Property_Value_Of_Parent", "ExampleId", type, dim1, dim2, propertyValues)

Miscellaneous

GDL Reference Guide 495

n = REQUEST ("Property_Values_Of_Parent", propInputIds, propOutputVals)
Returns a value dictionary for the given property ID dictionary. Can be used only in labels. Expression returns 0 and contains dummy return values
(emtpy string or 0) if used in parameter script or used with unknown input dictionary key, causing additional warning.
Compatibility: introduced in ARCHICAD 23.
propInputIds: (dictionary) defining the selected property IDs.
propInputIds.propertyIds[n]: (array) contains a dictionary for each selected property ID.
propInputIds.propertyIds[n].id: (string) the ID of the selected property.
propOutputVals: (dictionary) the property value data for the selected property IDs.
propOutputVals.propertyValues[n]: (array) contains dictionaries for each property value.
propOutputVals.propertyValues[n].value_status: the status of the selected property value
1: the selected property is available and has value
2: the selected property is available but no value has been defined for it
3: the property is unavailable, or the selected ID is not valid
4: the property value cannot be evaluated

propOutputVals.propertyValues[n].type: the type of the selected property value. This key only exists in case the
propOutputVals.propertyValues[n].value_status is 1 or 2.
1: boolean
2: integer
3: real number
4: string
5: length
6: area
7: volume
8: angle

propOutputVals.propertyValues[n].value[]: (array) contains the list of the selected property values.

Miscellaneous

GDL Reference Guide 496

Example 6:
dict propInputIds
 propInputIds.propertyIds[1].id = "ExampleId1"
 propInputIds.propertyIds[2].id = "ExampleId2"
 ...
 propInputIds.propertyIds[n].id = "ExampleIdn"
dict propOutputVals
n = REQUEST ("Property_Values_Of_Parent", propInputIds, propOutputVals)
! propOutputVals
 .propertyValues[1].value_status
 .propertyValues[1].type
 .propertyValues[1].value[]
 .propertyValues[2].value_status
 .propertyValues[2].type
 .propertyValues[2].value[]
 ...
 .propertyValues[n].value_status
 .propertyValues[n].type
 .propertyValues[n].value[]

n = REQUEST ("Component_Properties_Of_Parent", propertyType, parentComponentProperties)
Returns the component properties, which are available for at least one of the building material components of the parent object. All properties
are returned in one array with the following form: ID, type, group, name. Can be used only in labels. Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning.
AC property: [guid, "", "GroupName", PropertyName]
Classification: [guid, "Classification", "", ClassificationSystemName]

propertyType: keyword defining the type of the requested properties. Empty string returns all available types of properties. Possible values:
"ACPROPERTY"
"CLASSIFICATION"

Compatibility: the request is introduced in ARCHICAD 23.

Miscellaneous

GDL Reference Guide 497

Example 7:
DIM parentComponentProperties[]
n = REQUEST ("Component_Properties_Of_Parent", "", parentComponentProperties)
! parentComponentProperties = [Id1, TypeName1, GroupName1, PropertyName1,
 Id2, TypeName2, GroupName2, PropertyName2,
 ...
 Idn, TypeNamen, GroupNamen, PropertyNamen]

n = REQUEST ("Component_IDs_Of_Parent", collectComponents, outputCompIds)
Returns the building material component IDs of the parent object in a dictionary form. Can be used only in labels. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 23.
collectComponents: (dictionary) defining the method of collecting the building material components of the parent object.
collectComponents.collectMode: (integer) the method of collecting the building material components. This key is optional, if it

does not exist, the request uses a default collectMode of 1.
1: (default) returns all the building material component IDs of the parent
2: returns the same building material component IDs in the same order as in WALL_SKINS_PARAMS, SHELLBASE_SKINS_PARAMS,
SLAB_SKINS_PARAMS or ROOF_SKINS_PARAMS - depending on the element type of the parent.

outputCompIds: (dictionary) the building material component IDs of the parent object.
outputCompIds.componentIds[n]: (array) contains dictionaries for each building material component ID.
outputCompIds.componentIds[n].id: (integer) the building material component ID of the parent element.

Example 8:
dict collectComponents
 collectComponents.collectMode = 1
dict outputCompIds
n = REQUEST ("Component_IDs_Of_Parent", collectComponents, outputCompIds)
! outputCompIds
 .componentIds[1].id
 .componentIds[2].id
 ...
 .componentIds[n].id

Miscellaneous

GDL Reference Guide 498

n = REQUEST ("Component_Property_Values_Of_Parent", compPropInput, compPropVals)
Returns a value dictionary for the given component ID and property IDs. Can be used only in labels. Expression returns 0 and contains dummy
return values (emtpy string or 0) if used in parameter script or used with unknown input dictionary key, causing additional warning.
Compatibility: introduced in ARCHICAD 23.
compPropInput: (dictionary) defining the selected building material component and property IDs.
compPropInput.componentId: (dictionary) contains a dictionary for the selected building material component ID.
compPropInput.componentId.id: (integer) the selected building material component ID, available via the

"Component_IDs_Of_Parent" request.
compPropInput.propertyIds[n]: (array) contains a dictionary for each selected property ID.
compPropInput.propertyIds[n].id: (string) the ID of the selected property.
compPropVals: (dictionary) the building material component property value data for the selected property IDs.
compPropVals.propertyValues[n]: (array) contains a dictionary for each property value.
compPropVals.propertyValues[n].value_status: the status of the selected property value
1: the selected property is available and has value
2: the selected property is available but no value has been defined for it
3: the property is unavailable, or the selected ID is not valid
4: the property value cannot be evaluated

compPropVals.propertyValues[n].type: the type of the selected property value. This key only exists in case the
compPropVals.propertyValues[n].value_status is 1 or 2.
1: boolean
2: integer
3: real number
4: string
5: length
6: area
7: volume
8: angle

compPropVals.propertyValues[n].value[]: (array) contains the list of the selected property values.

Miscellaneous

GDL Reference Guide 499

Example 9:
dict compPropInput
 compPropInput.componentId.id = iActualID ! From "Component_IDs_Of_Parent" request
 compPropInput.propertyIds[1].id = "ExampleId1"
 compPropInput.propertyIds[2].id = "ExampleId2"
 ...
 compPropInput.propertyIds[n].id = "ExampleIdn"
dict compPropVals
n = REQUEST ("Component_Property_Values_Of_Parent", compPropInput, compPropVals)
! compPropVals = propertyValues[1].value_status
 .propertyValues[1].value_status
 .propertyValues[1].type
 .propertyValues[1].value[]
 .propertyValues[2].value_status
 .propertyValues[2].type
 .propertyValues[2].value[]
 ...
 .propertyValues[n].value_status
 .propertyValues[n].type
 .propertyValues[n].value[]

n = REQUEST ("Property_Name", "id", typeName, groupName, propertyName)
Returns the type, group and name of the selected property. Can be used only in labels. Expression returns 0 and contains dummy return values (emtpy
string or 0) if used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 20.
id: the ID of the selected property (string).
typeName: the Type of the selected property (string).
"IFC": for IFC properties
"": other properties

groupName: the Group of the selected property (string).
empty string ("") for Core properties.

propertyName: the Name of the selected property (string).
n = REQUEST ("AUTOTEXT_LIST", "", autoTextListArray)

Miscellaneous

GDL Reference Guide 500

Returns one AUTOTEXT array of the autotexts used in the project with the following triplets ["ID", "Category", "Name"]. Expression returns
0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning. Can be used only in UI script. The ID is stored
in the parameter via the UI_CUSTOM_POPUP... commands.
Contains all autotexts from Project Info and Autotext Dialog (Text tool - Insert Autotext).
Compatibility: introduced in ARCHICAD 20.

Example 10:
DIM autoTextListArray[]
n = REQUEST ("AUTOTEXT_LIST", "", autoTextListArray)
! autoTextListArray = [ID1, CategoryName1, TextName1,
 ID2, CategoryName2, TextName2,
 ...
 IDn, CategoryNamen, TextNamen]

n = REQUEST{3} ("Sum_with_rounding", req_name, addends_array, result)
Returns the sum of the numbers in addends_array, with rounding according to the "Calculate Totals by" project preference. This preference
can be found in Options/Project Preferences/Calculation Units & Rules.
Possible project preference settings:
• "Displayed values": the request will first round the addends according to req_name, and then sum them.
• "Exact values": the request will simply sum the addends.
Causes warning if used in parameter script.
Compatibility: introduced in ARCHICAD 20.
Return values:
• 0, if req_name is invalid.
• 1, if the call succeeded.
req_name: the name of the formatting request specifying how the addends have to be rounded if "Calculate Totals by" is set to "Displayed

values".
For example if req_name = "Area_dimension", and the Project Preferences / Dimensions / Area Calculations is set to "square centimeter"
with 3 decimals, rounding to 0.025, then the addends will be rounded to the multiples of 0.025 cm², that is to 0.0000025 m².
Valid request names:
Linear_dimension, Angular_dimension, Radial_dimension, Level_dimension, Elevation_dimension, Window_door_dimension,
Sill_height_dimension, Area_dimension, Calc_length_unit, Calc_area_unit, Calc_volume_unit, Calc_angle_unit.

Miscellaneous

GDL Reference Guide 501

addends_array: the array of numbers to be added. Whether they have to be treated as m, m², m³ or degrees is determined by req_name.
result: a number, on return it will be set to the sum of the addends according to the "Calculate Totals by" preference. Note that result is

in the same unit as the addends. It is not converted to the target unit specified by req_name.
n = REQUEST ("ASSOCLP_PARVALUE", expr, name_or_index, type, flags, dim1, dim2, p_values)
n = REQUEST ("ASSOCLP_PARVALUE_WITH_DESCRIPTION", expr, name_or_index, type,
 flags, dim1, dim2, p_values_and_descriptions)
Returns information in the given variables on the library part parameter with which the library part containing this request is associated. Can
be used in property objects, labels and marker objects.
The function return value is the number of successfully retrieved values, 0 if the specified parameter does not exist or an error occurred.
expr: the request’s object, associated library part parameter name or index expression.
name_or_index: returns the index or the name of the parameter, depending on the previous expression type (returns index if a parameter

name, name if the index is specified).
type: parameter type, possible values:
1: boolean
2: integer
3: real number
4: string
5: length
6: angle
7: line
8: material
9: fill
10: pen color
11: light switch
12: rgb color
13: light intensity
14: separator
15: title
16: building material
17: profile Compatibility: introduced in ARCHICAD 23

flags:

Miscellaneous

GDL Reference Guide 502

flags = j1 + 2*j2 + 64*j7 + 128*j8, where each j can be 0 or 1.
j1: child/indented in parameter list
j2: with bold text in parameter list
j7: disabled (locked in all contexts)
j8: hidden in the parameter list

dim1, dim2: dim1 is the number of rows, dim2 the number of columns.
dim1 = 0, dim2 = 0: simple, scalar value
dim1 > 0, dim2 = 0: one dimensional array
dim1 > 0, dim2 > 0: two dimensional array
If dim2 > 0, then dim1 > 0.

p_values: for ASSOCLP_PARVALUE returns the parameter value or array of values. The array elements are returned successively, row
by row as a one dimensional array, independently of the dimensions of the variable specified to store it. If the variable is not a dynamic
array, there are as many elements stored as there is room for (for a simple variable only one, the first element). If values is a two dimensional
dynamic array, all elements are stored in the first row.

p_values_and_descriptions: for ASSOCLP_PARVALUE_WITH_DESCRIPTION returns the parameter value followed by the
parameter description string (as specified at the VALUES command command) or an array of these pairs. For string type parameters the
description string is always empty. The array element - array element description string pairs are returned successively, row by row as a one
dimensional array, independently of the dimensions of the variable specified to store it. If the variable is not a dynamic array, there are as
many elements stored as there is room for (for a simple variable only one, the first element). If values is a two dimensional dynamic array,
all elements are stored in the first row.

n = REQUEST ("ASSOCLP_NAME", "", name)
Returns in the given variable the name of the library part associated with the label or marker object. For elements (Walls, Slabs, etc.) the name
is an empty string. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("ASSOCEL_PROPERTIES", parameter_string, nr_data, data)
Returns, in the given variables, own property data or the element properties which the library part containing this request is associated to (in
labels and associative marker objects). The function return value is the number of successfully retrieved values, 0 if no property data was found
or an error occurred. The function does not work in property objects during the listing process. Expression returns 0 and contains dummy return
values (emtpy string or 0) if used in parameter script, causing additional warning.
parameter_string: a combination of keywords separated by commas representing the requested fields of the property data records.

Records will be ordered accordingly. Possible values:
"ISCOMP"

Miscellaneous

GDL Reference Guide 503

"DBSETNAME"
"KEYCODE"
"KEYNAME"
"CODE"
"NAME"
"FULLNAME"
"QUANTITY"
"TOTQUANTITY"
"UNITCODE"
"UNITNAME"
"UNITFORMATSTR"
"PROPOBJNAME"

nr_data: returns the number of the data items.
data: returns the property data, records containing and being ordered by the fields specified in the parameter string. Values are returned as

a one dimensional array which contains the requested record fields successively, independently of the dimensions of the variable specified to
store it. If the variable is not a dynamic array, there are as many elements stored as there is room for (in case of a simple variable only one,
the first element). If values is a two dimensional dynamic array, all elements are stored in the first row.

Example 11:
DIM DATA []
n = REQUEST ("ASSOCEL_PROPERTIES", "iscomp, code, name", nr, data)
IF nr = 0 THEN
 TEXT2 0, 0, "No properties"
ELSE
 j = 0
 FOR i = 1 TO nr
 IF i MOD 3 = 0 THEN
 TEXT2 0, -j, DATA [i] ! name
 j = j + 1
 ENDIF
 NEXT i
ENDIF

n = REQUEST ("REFERENCE_LEVEL_DATA", "", name1, elev1, name2, elev2,
 name3, elev3, name4, elev4)

Miscellaneous

GDL Reference Guide 504

Returns in the given variables the names and elevations of the reference levels as set in the Options/Project Preferences/Reference Levels
dialog. The function return value is the number of successfully retrieved values, 0 if an error occurred.
n = REQUEST ("ANCESTRY_INFO", expr, name [, guid,
 parent_name1, parent_guid1,
 ...
 parent_namen, parent_guidn)
Ancestry information on a library part. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional
warning.
If expr = 0, returns in the given variables the name and the globally unique identifier of the library part containing this request function.
Optionally the function returns the names and globally unique identifiers of the parents of the library part (parent_namei, parent_guidi). If the
parent templates are not loaded their names will be empty strings.
If expr = 1, returns information on the library part replaced by the template containing this function. In this case if the template is not actually
replacing, no values are returned.
The return value of the request is the number of successfully retrieved values.

Example 12:
DIM strings[]
n = REQUEST ("ANCESTRY_INFO", 1, name, guid, strings)
IF n > 2 THEN
 ! data of replaced library part
 TEXT2 0, -1, "replacing: " + name + ' ' + guid
 ! parents
 l = -2
 FOR i = 1 TO n - 2 STEP 2
 TEXT2 0, l, strings [i]
 l = l - 1
 NEXT i
ENDIF

n = REQUEST ("TEXTBLOCK_INFO", textblock_name, width, height)
Returns in the given variables the sizes in x and y direction of a text block previously defined via the TEXTBLOCK command. The sizes are in
mm or in m in model space depending on the fixed_height parameter value of TEXTBLOCK (millimeters if 1, meters in model space if 0). If
width was 0, the request returns the calculated width and height, if width was specified in the text block definition, returns the calculated height
corresponding to that width. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Miscellaneous

GDL Reference Guide 505

n = REQUEST{2} ("Material_info", name_or_index, param_name, value_or_values)
Returns information in the given variable(s) on a parameter (or extra parameter, see the section called “Additional Data”) of the specified
material. RGB information is returned in three separate variables, texture information is returned in the following variables: file_name, width,
height, mask, rotation_angle corresponding to the texture definition. All other parameter information is returned in single variables. Expression
returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning. Possible material parameter names
corresponding to parameters of the material definition:
param_name:
"gs_mat_surface_rgb": surface R, G, B [0.0..1.0]
"gs_mat_surface_r": surface R [0.0..1.0]
"gs_mat_surface_g": surface G [0.0..1.0]
"gs_mat_surface_b": surface B [0.0..1.0]
"gs_mat_ambient": ambient coefficient [0.0..1.0]
"gs_mat_diffuse": diffuse coefficient [0.0..1.0]
"gs_mat_specular": specular coefficient [0.0..1.0]
"gs_mat_transparent": transparent coefficient [0.0..1.0]
"gs_mat_shining": shininess [0.0..100.0]
"gs_mat_transp_att": transparency attenuation [0.0..4.0]
"gs_mat_specular_rgb": specular color R, G, B [0.0..1.0]
"gs_mat_specular_r": specular color R [0.0..1.0]
"gs_mat_specular_g": specular color G [0.0..1.0]
"gs_mat_specular_b": specular color B [0.0..1.0]
"gs_mat_emission_rgb": emission color R, G, B [0.0..1.0]
"gs_mat_emission_r": emission color R [0.0..1.0]
"gs_mat_emission_g": emission color G [0.0..1.0]
"gs_mat_emission_b": emission color B [0.0..1.0]
"gs_mat_emission_att": emission attenuation [0.0..65.5]
"gs_mat_fill_ind": fill index
"gs_mat_fillcolor_ind": fill color index
"gs_mat_texture": texture index

Miscellaneous

GDL Reference Guide 506

Example 13:
n = REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_ambient", a)
n = REQUEST{2} ("Material_info", 1, "gs_mat_surface_rgb", r, g, b)
n = REQUEST{2} ("Material_info", "Brick-Face", "gs_mat_texture",
 file_name, w, h, mask, alpha)
n = REQUEST{2} ("Material_info", "My-Material", "my_extra_parameter", e)

n = REQUEST{2} ("Building_Material_info", name_or_index, param_name, value_or_values)
Returns information in the given variable(s) on a parameter of the specified building material. Expression returns 0 and contains dummy return values
(emtpy string or 0) if used in parameter script, causing additional warning. Possible building material parameter names corresponding to parameters of
the building material definition:
param_name:
"gs_bmat_id": building material id
"gs_bmat_surface": building material surface index
"gs_bmat_description": building material description
"gs_bmat_manufacturer": building material manufacturer
"gs_bmat_collisiondetection": building material participates in collision detection (0 or 1)
"gs_bmat_intersectionpriority": building material intersection priority
"gs_bmat_cutFill_properties": building material cut fill properties (cut fill index number, cut fill foreground pen index number,
cut fill background pen index number)
"gs_bmat_physical_properties": building material physical properties (thermal conductivity, density, heat capacity, embodied
energy, embodied carbon)

Example 14:
n = REQUEST{2} ("Building_Material_info", "Brick", "gs_bmat_id", id)
n = REQUEST{2} ("Building_Material_info", "Brick", "gs_bmat_surface", index)
n = REQUEST{2} ("Building_Material_info", "Brick", "gs_bmat_physical_properties",
 thermalConductivity, density, heatCapacity, embodiedEnergy, embodiedCarbon)

n = REQUEST ("FONTNAMES_LIST", "", fontnames)
Returns in the given variables the fontnames available on the current computer (with character codes included). This list (or any part of this
list) can be used in a VALUES command to set up a fontname popup. The function return value is the number of successfully retrieved values,
0 if an error occurred.

Miscellaneous

GDL Reference Guide 507

Example 15:
dim fontnames[]
n = REQUEST ("FONTNAMES_LIST", "", fontnames)
VALUES "f" fontnames, CUSTOM
This form of the VALUES command assembles a fontnames pop-up for the simple string-typed parameter "f". The "fontnames" variable
contains the possible fontnames (with character codes included) which can be set manually or using the REQUEST ("FONTNAMES_LIST", ...)
command. The CUSTOM keyword is necessary for the correct handling of missing fonts on other platforms/computers: if it is specified, a
fontname set on another platform/computer missing in the current environment will be preserved in the parameter settings as a custom value
(otherwise, due to the implementation of the VALUES command, a missing string popup value in the parameter settings will be replaced with
the first current string value). It is recommended to include this function in the ARCHICAD_Library_Master file.

n = REQUEST ("HomeDB_info", "", homeDBIntId, homeDBUserId, homeDBName, homeContext)
Returns in the given variables the internal ID (integer), the user ID and name (strings) of the home database (where the library part containing
this request was placed).
• if placed on the floor plan: the story internal ID, index as a string and name, homeContext = 1,
• if placed on a section: the section internal ID, reference ID and name, homeContext = 2,
• if placed on a detail: the detail internal ID, reference ID and name, homeContext = 3,
• if placed on a master layout: the layout internal ID, empty string and name, homeContext = 4,
• if placed on a layout: the layout internal ID, number and name, homeContext = 5.
For labels the returned data refers to the labeled element. The collected data can be used to uniquely identify elements in different ARCHICAD
databases of a plan file. Causes warning if used in parameter script.
n = REQUEST ("floor_plan_option", "", storyViewpointType)
Returns the story viewpoint type which is set in the Model View Options. 0 stands for "Floor Plan", 1 stands for "Ceiling Plan". Expression
returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
n = REQUEST ("class_of_fill", index, class)
Returns class of the fill identified by index in the class variable. Causes warning if used in parameter script.
class: Possible values:
1: vector fill
2: symbol fill
3: translucent fill
4: linear gradient fill
5: radial gradient fill

Miscellaneous

GDL Reference Guide 508

6: image fill
n = REQUEST ("view_rotangle", "", angleViewRotation)
Returns the rotation angle of the current view. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing
additional warning.
n = REQUEST ("program_info", "", name[, version[, keySerialNumber[, isCommercial]]])
Returns information on the currently running program. Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter
script, causing additional warning.
name: name of the program
version: version number of the program
keySerialNumber: serial number of the keyplug
isCommercial: returns true if there is running a full (commercial) version of the program
n = REQUEST ("Configuration_number", "", stConfigurationNumber)
Returns the configuration number (as string expression) assigned to the current ARCHICAD license in case of soft license or hardware key.
Returns empty string in case of Edu, Trial or Demo licenses. Each configuration number is unique and does not change.
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 20.
n = REQUEST (extension_name, parameter_string, variable1, variable2, ...)
If the question isn’t one of those listed above, the REQUEST() function will attempt to use it as an extension-specific name. If this extension
is loaded, it will be used to get as many variable names as are specified. The parameter string is interpreted by the extension.
n = REQUEST ("COMPONENT_PROJECTED_AREA", idxSkin, projectedArea)
Returns the projected area of the indexed skin. Available in property script only (other scripts return 0). Expression returns 0 and contains dummy
return values (emtpy string or 0) if used in parameter script, causing additional warning.
idxSkin: Possible values:
0: for basic elements
1- : index of the skin in composites
1- : index of the component in profiles

Example 16:
n = request ("COMPONENT_PROJECTED_AREA", 0, a)
COMPONENT "Projected Area", a, "m2"

Miscellaneous

GDL Reference Guide 509

Used in property script, first request the area of the skin, then create a component using the returned value.

n = REQUEST ("COMPONENT_VOLUME", idxSkin, skinVolume)
Returns the volume of the indexed skin/component. Available in property script only (other scripts return 0). Expression returns 0 and contains
dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
idxSkin: Possible values:
0: for basic elements
1- : index of the skin in composites
1- : index of the component in profiles

Example 17:
n = request ("COMPONENT_VOLUME", 0, v)
COMPONENT "Volume", v, "m3"
Used in property script, first request the volume of the skin, then create a component using the returned value.

n = REQUEST ("DateTime", format_string, datetimestring)
Returns the current date and time as a formatted string in datetimestring. Uses the DateTime Add-On, opening and closing the required
channel.
format_string: Format string, described at paramString parameter of the section called “Opening Channel” .
datetimestring: the formatted string is returned in this variable
The requests cause warning if used in parameter script.

Profile Requests
n = REQUEST ("Name_of_Profile", index, name)
Returns in the name variable the profile name identified by index. Expression returns 0 and contains dummy return values (emtpy string or 0) if used
in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 21.
n = REQUEST ("Profile_components", name_or_index, nComponents,
 compType1, compType2, ..., compTypen)
Returns the number (nComponents) and component types (compTypen) of the profile identified by name or index. Expression returns 0 and
contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Miscellaneous

GDL Reference Guide 510

compTypei: Possible values of profile component types:
0: core
1: finish
2: other

Compatibility: introduced in ARCHICAD 21.

Example 1:
_nComponents = 0
dim _componentTypes[]
n = REQUEST ("Profile_components", myProfileIdx, _nComponents, _componentTypes

n = REQUEST ("Profile_default_boundingbox", name_or_index, xmin, ymin, xmax, ymax)
Returns the 2 defining coordinate point of the original bounding rectangle relative to the origo of the profile identified by name or index.
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Compatibility: introduced in ARCHICAD 21.
n = REQUEST ("Profile_default_geometry", name_or_index, n1, n2, ..., nm,
 x11, y11, edgeVisible11, vertEdgeVisible11, additionalStatus11, ...,
 x1n1, y1n1, edgeVisible1n1, vertEdgeVisible1n1, additionalStatus1n1,
 x21, y21, edgeVisible21, vertEdgeVisible21, additionalStatus21, ...,
 x2n2, y2n2, edgeVisible2n2, vertEdgeVisible2n2, additionalStatus2n2, ...,
 xm1, ym1, edgeVisiblem1, vertEdgeVisiblem1, additionalStatusm1, ...,
 xmnm, ymnm, edgeVisiblemnm, vertEdgeVisiblemnm, additionalStatusmnm)
Returns the original geometric data of the profile identified by name or index. Expression returns 0 and contains dummy return values (emtpy string
or 0) if used in parameter script, causing additional warning.
n1...ni: then number of contour nodes in each profile component. The total number of profile components (m) can be returned by

the "Profile_components" request.
edgeVisiblei: contour starting from i node is visible.
vertEdgeVisiblei: vertical edge starting from i node is visible, usable in 3D (0 in case of segmented polygon).
additionalStatusi: used for segments and arcs of the polyline (set centerpoint = 900, arc using centerpoint and angle = 4000, etc.),

or to mark the contour end control point (-1, this case the vertEdgeVisiblei and edgeVisiblei are set to 0 automatically).
The status parameters returned in this structure support different status type definitions of poly2, cprism, tube. Each format can be calculated
with the following method:

Miscellaneous

GDL Reference Guide 511

Example 2:
poly2Status = edgeVisible + additionalStatus
prismStatus = additionalStatus
tubeStatus = additionalStatus
if additionalStatus >= 0 then ! not contour end
 if edgeVisible then
 prismStatus = prismStatus + 15 ! j1, j2, j3, j4
 endif
 if verticalEdgeVisible = 0 then
 prismStatus = prismStatus+ 64 ! j7
 ! in tube, lateral edges starting from the node are used for showing the contour
 tubeStatus = tubeStatus + 1
 endif
endif

Compatibility: introduced in ARCHICAD 21.
n = REQUEST{4} ("Profile_component_info", name_or_index, component_ind, param_name, value)
Returns a requested attribute value of a dedicated component (by component_ind) of the profile identified by name or index. Expression
returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
The component_ind must be in the valid range of nComponents (defined by "Profile_components" request).
param_name: addresses attribute settings of Profile Manager, returned in value
"gs_profile_bmat": building material index of the component
"gs_profile_surface": override surface index of the component (in case of active override settings; returns the surface of the
building material otherwise)
"gs_profile_showoutline": "Show Outline" setting of the component
"gs_profile_outlinetype": "Outline Type" setting of the component
"gs_profile_outlinepen": "Outline Pen" setting of the component

Return attribute values can be used in any attribute related command, such as POLY2_B{6}, where contour sections of the polygon can be
customized individually.
Compatibility: introduced in ARCHICAD 21.
n = REQUEST{4} ("Profile_component_info", name_or_index, component_ind, param_name,
 value1, value2, ..., valuen)
Returns requested attributes of all edges in the dedicated component (by component_ind) of the profile identified by name or index.
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.

Miscellaneous

GDL Reference Guide 512

The component_ind must be in the valid range of nComponents (defined by "Profile_components" request).
param_name: addresses attribute settings of Profile Manager, returned in value
"gs_profile_comp_surfaces": individual surface indexes of edges of the component
"gs_profile_comp_pens": individual pen indexes of edges of the component
"gs_profile_comp_linetypes": individual linetype indexes of edges of the component

Return attribute values can be used in any attribute related command, such as POLY2_B{6}, where contour sections of the polygon can be
customized individually.
Compatibility: introduced in ARCHICAD 21.

Deprecated Requests
n = REQUEST ("Constr_Fills_display", "", optionVal)
Expression returns 0 and contains dummy return values (emtpy string or 0) if used in parameter script, causing additional warning.
Compatibility up till ARCHICAD 19: returns in the given variable the value of the Cut Fills Display option as set in the Document/ Set Model View/ Model
View Options. (previous Construction Fills).
Compatibility starting from ARCHICAD 20: the returned value is always 6 by default (Cut fill patterns: as in Settings).
optionVal: cut fill display code.
1: Show cut fill contours only (previous Empty)
2: Show cut fill contours only with separator lines (previous No Fills)
4: Cut fill patterns: Solid (previous Solid)
6: Cut fill patterns: as in Settings (previous Vectorial Hatching)

n = REQUEST ("internal_ID", "", id)
Always returns 1. Use GLOB_INTGUID global variable instead.

APPLICATION QUERY OPTIONS
n = APPLICATION_QUERY (extension_name, parameter_string, variable1, variable2, ...)
Below is a list of request functions ARCHICAD can provide with the help of the APPLICATION_QUERY command. These request options
are given in the extension_name and the parameter_string parameter of the command. Note, that the query options and return values of
an APPLICATION_QUERY may vary according to the execution context.
The use of the following application query types in parameter script is not supported. These queries cause GDL warnings starting from
ARCHICAD 19, and will return either 0 or empty string starting from the next versions. The restriction applies to:
• "document_feature"

Miscellaneous

GDL Reference Guide 513

Document feature
This command can return features of the active document/view. Currently there is only one feature it can return - the view direction of the
document. These type of queries are restricted from the parameter script and cause GDL warnings.

View direction
n = APPLICATION_QUERY ("document_feature", "view_direction", type)
This command returns the viewing direction of the current document type in which the object is being visualized. This command has no
additional parameters.
type: Returned type values:
"vertical_only": for floor plan
"horizontal_only": for section and elevation generated from 3D (not when the object is placed into a S/E)
"free": for 3D and 3D document
"none"
"unset"

MEP System
This command returns MEP system types and information about MEP systems. It has more functions which can be addressed via the
parameter_string parameter:

Get MEP Systems
DIM d[2][]
n = APPLICATION_QUERY ("MEPSYSTEM", "GetMEPSystems(domain)", d)
domain: MEP classification index (DuctWork – 1, PipeWork – 2) (GDL defines the MEP classifications based on connector class)
d: Array of values:
[2*k-1]: MEP system index
[2*k]: MEP system name

n: Number of MEP systems multiplied by 2.

Get Domain
n = APPLICATION_QUERY ("MEPSYSTEM", "GetDomain(idx)", d)
idx: MEP system index

Miscellaneous

GDL Reference Guide 514

d: domains (integer)
1: DuctWork
2: PipeWork
3: Duct- and PipeWork
4: Cabling
5: DuctWork and Cabling
6: PipeWork and Cabling
7: DuctWork, PipeWork and Cabling

n: 1 if successful, 0 otherwise

Get Contour Pen
n = APPLICATION_QUERY ("MEPSYSTEM", "GetContourPen(idx)", pen)
idx: MEP system index
pen: contour pen index (integer)
n: 1 if successful, 0 otherwise

Get Fill Pen
n = APPLICATION_QUERY ("MEPSYSTEM", "GetFillPen(idx)", pen)
idx: MEP system index
pen: fill pen index (integer)
n: 1 if successful, 0 otherwise

Get Background Pen
n = APPLICATION_QUERY ("MEPSYSTEM", "GetBgPen(idx)", pen)
idx: MEP system index
pen: background pen index (integer)
n: 1 if successful, 0 otherwise

Get Fill Type
n = APPLICATION_QUERY ("MEPSYSTEM", "GetFillType(idx)", filltype)

Miscellaneous

GDL Reference Guide 515

idx: MEP system index
filltype: fill type index (integer)
n: 1 if successful, 0 otherwise

Get Center Line Type
n = APPLICATION_QUERY ("MEPSYSTEM", "GetCenterLineType(idx)", line)
idx: MEP system index
line: center line type index (integer)
n: 1 if successful, 0 otherwise

Get Center Line Pen
n = APPLICATION_QUERY ("MEPSYSTEM", "GetCenterLinePen(idx)", pen)
idx: MEP system index
pen: center line pen index (integer)
n: 1 if successful, 0 otherwise

Get System Material
n = APPLICATION_QUERY ("MEPSYSTEM", "GetSystemMaterial(idx)", material)
idx: MEP system index
material: system material index (integer)
n: 1 if successful, 0 otherwise

Get Insulation Material
n = APPLICATION_QUERY ("MEPSYSTEM", "GetInsulationMaterial(idx)", material)
idx: MEP system index
material: insulation material index (integer)
n: 1 if successful, 0 otherwise

Miscellaneous

GDL Reference Guide 516

MEP Modeler
This command returns whether MEP modeler is active. It has one function which can be addressed via the parameter_string parameter:

Is Available
n = APPLICATION_QUERY ("MEPMODELER", "IsAvailable()", isavailable)
isavailable: MEP Modeler is present (integer)
n: 1 if successful, 0 otherwise

MEP Connection Type
This command returns the connection types and the styles of connection types. It has two functions which can be addressed via the
parameter_string parameter:

Get Connection Types
DIM d[2][]
n = APPLICATION_QUERY ("MEPCONNECTIONTYPE", "GetConnectionTypes(connectorClass)", d)
connectorClass: connector class (Duct – 1, Pipe – 2, Cable carrier – 3)
d: Array of values:
[2*k-1]: connection type GUID
[2*k]: connection type name

n: Number of connection types multiplied by 2.

Get Connection Type Style
DIM d[]
n = APPLICATION_QUERY ("MEPCONNECTIONTYPE", "GetConnectionTypeStyle(connectorClass)", d)
connectorClass: connector class (Duct – 1, Pipe – 2, Cable carrier – 3)
d: Array of values:
[]: connection type styles

n: Number of connection types.

Miscellaneous

GDL Reference Guide 517

MEP Flexible Segment
This command returns the geometry of flexible segments. It has four functions which can be addressed via the parameter_string parameter:

Start Sectioning
n = APPLICATION_QUERY ("MEPFLEXIBLESEGMENT", "StartSectioning()", r)
Indicates that sectioning has begun.
r: not used
n: 1 if successful, 0 otherwise

Add Control Point
n = APPLICATION_QUERY ("MEPFLEXIBLESEGMENT", "AddControlPoint(x; y; z)", r)
Provides a control point to the add-on.
AddControlPoint:
x: X coordinate of the control point
y: Y coordinate of the control point
z: Z coordinate of the control point

r: not used
n: 1 if successful, 0 otherwise

Add Direction and Width Vector
n = APPLICATION_QUERY ("MEPFLEXIBLESEGMENT",
 "AddDirectionAndWidthVector(i; dx; dy; dz; wx; wy; wz)", r)
Provides the direction and side vectors of the ends of spline to add-on. It is called twice.
AddDirectionAndWidthVector:
i: id of port (1: 0. port, 2: 1. port etc.)
dx: X component of direction vector of the port
dy: Y component of direction vector of the port
dz: Z component of direction vector of the port
wx: X component of side vector of the port
wy: Y component of side vector of the port
wz: Z component of side vector of the port

Miscellaneous

GDL Reference Guide 518

r: not used
n: 1 if successful, 0 otherwise

End Sectioning
DIM d[]
n = APPLICATION_QUERY ("MEPFLEXIBLESEGMENT", "EndSectioning(res)", d)
Getting of the result of sectioning.
res: resolution of sectioning
d: Array of values:
[9*k-8]: X position of k segment
[9*k-7]: Y position of k segment
[9*k-6]: Z position of k segment
[9*k-5]: X component of tangent vector of k segment
[9*k-4]: Y component of tangent vector of k segment
[9*k-3]: Z component of tangent vector of k segment
[9*k-2]: X component of normal vector k segment
[9*k-1]: Y component of normal vector k segment
[9*k]: Z component of normal vector k segment

n: Number of segments

MEP Bend
This command returns the geometry of flexible segment. It has four functions which can be addressed via the parameter_string parameter:

Start Sectioning
n = APPLICATION_QUERY ("MEPBEND", "GetBendTypeNames()", d)
d: Bend Type Names (examples of INT version)
"Radius"
"Square Throat"
"Mitered"
"45° Throat with 45° Heel"
"45° Throat with 90° Heel"

Miscellaneous

GDL Reference Guide 519

"45° Throat with Radius Heel"
"Radius Throat with 90° Heel"
"Pleated"
"Stamped"
"Segmented"
"Segmented Standing Seam"

n: 1 if successful, 0 otherwise

Parameter Script
This command can return various conditions of the parameter script. Currently there is only one feature it can return - the distinction of the
first run.

First Occasion in Progress
n = APPLICATION_QUERY ("parameter_script", "firstoccasion_in_progress", isFirstRun)
This command returns whether the current run is the first run or a consequence of a previous execution of the parameter script which changed
some parameters. This command has no additional parameters.
The distinction may be important when a part of the parameter script executes a triggered event - e.g. it handles the pushing of a function button.
isFirstRun: The returned value shows whether the current run is the first run

Tags and Categories
These commands return the folder names, parameter names and parameter values of "Tags and Categories" tabpage. The order of parameters
is the same as on the tabpage. There are two possible extension_names in these commands:
• "OwnCustomParameters" returns parameters of the object
• "ParentCustomParameters" returns parameters of the object's parent

Get Parameter Folder Names
DIM folderNamesArray[] ! [idString 1],[shortNameString 1],[longNameString 1],
 ! ...
 ! [idString n],[shortNameString n],[longNameString n]
n = APPLICATION_QUERY (extension_name, "GetParameterFolderNames()", folderNamesArray)
Returns the folder names of Tags and Categories parameters.
folderNamesArray: String array which contains the foldernames of Tags and Categories

Miscellaneous

GDL Reference Guide 520

n+1: Number of folders including the root folder

Get Parameter Names
DIM parNamesArray[] ! [idString 1],[shortNameString 1],[longNameString 1],
 ! ...
 ! [idString n],[shortNameString n],[longNameString n]
n = APPLICATION_QUERY (extension_name,
 "GetParameterNames(folderNamesArray[i][1])", parNamesArray)
Returns the names of Tags and Categories parameters.
The first column of the array returned at the section called “Get Parameter Folder Names”.
parNamesArray: String array which contains the names of Tags and Categories parameters
n: Number of parameters

Get Parameters
n = APPLICATION_QUERY (extension_name, "GetParameter(parNamesArray[i][2])", parValue)
Returns the values of Tags and Categories parameters.
The second column of the array returned at the section called “Get Parameter Names”.
parValue: String which contains the value of Tags and Categories parameters
n: 1 if successful, 0 otherwise

Library manager
This command can return various features of the library manager.

Ies files
n = APPLICATION_QUERY ("LIBRARY_MANAGER", "IES_FILES", ies_files_list)
This command returns the list of file names with .ies extensions loaded with the active libraries.

User image files
n = APPLICATION_QUERY ("LIBRARY_MANAGER", "USER_IMAGE_FILES", image_files_list)
This command returns the list of user-provided image file names loaded with the active libraries (image files which are not in the dedicated
folders with names containing [TImg]*, [BImg]*, [UImg]*, or [HImg]*)

Miscellaneous

GDL Reference Guide 521

GDL STYLE GUIDE

Introduction
This document contains the GDL coding standard of GRAPHISOFT, which mainly sets the formal requirements for writing source code.
It also describes a few rules and recommendations for the content. You have to obey these rules in order to produce manageable scripts; by
default every declarative or imperative sentence is a rule, except where 'recommendation' (or avoidable, optional, etc.) is explicitly stated.
This document was created to establish a common format of GDL scripting. The GDL language is insensitive to the character case and most
of the whitespace characters. As a result, lots of coding practices and standards exist. This gets intolerable, when such practices meet in the
same project or organization. The following sections describe the GRAPHISOFT company standard, which remains purely a recommendation
for non-GRAPHISOFT related developers. The supposed format will not be included in the GDL language's constraints ever.

Naming Conventions

General rules
Because of the subtype hierarchy, the child library parts automatically inherit all parameters of the parent. (Read more about subtypes and
parameter in the ARCHICAD User Guide). Parameters are identified by their name, so inherited and original parameters can have the same
name. It is the responsibility of the library author to avoid conflicts by using descriptive parameter names prefixed with abbreviated library part
names. For handler parameters and user-defined parameters, GRAPHISOFT has introduced a parameter naming convention in its libraries.

Note
Handlers add extra functionality to library parts (e.g. doors and windows cut holes in walls). Parameter names with the prefix ac_
are reserved for special parameters associated with ARCHICAD handlers (e.g. ac_corner_window). Check the standard ARCHICAD
Library subtype templates for the complete list.

Standard GRAPHISOFT parameter names are marked with the gs_ prefix (e.g. gs_frame_pen). Please check the ARCHICAD library parts for
reference. Use these parameters in your GDL scripts to ensure full compatibility with GRAPHISOFT libraries.
FM_ is reserved for ArchiFM (e.g. FM_Type).

Variable names
Variable and parameter names should be related with the function of the parameter.
mixedCase: starts with a lowercase letter; every new word should start with an uppercase letter. E.g.: size, bRotAngle180,
upperLeftCorner

Miscellaneous

GDL Reference Guide 522

Don't use one or two letter variable names - no one will know what you meant.
You should use a prefix in generally used variable names to denote general categories. This can spare time when someone needs to find out the
type of a variable or parameter. Don't forget to replace the prefix if you change the meaning of a variable.

Table 6. Variable name prefixes
Prefix Meaning Example

i General integer value / integer index iRiser

n Integer value - amount of something nRiser

b Boolean value bHandrail

st String type value stPanelTypes

x X coordinate of a point xRailPos

y Y coordinate of a point yRailPos

pen Pen color penContour

lt Linetype ltContour

fill Fill type fillMainBody

mat Material type matCover

Using underscores (_) is recommended for distinguishing variables and parameters in the same script: use single underscore (_) prefix for a
variable in a script, and double (__) for a variable declared and used only inside a subroutine section. Do not use underscores in the beginning
of parameter names, or to separate words in a name. Historical names coming from subtypes are exceptions.
Example

_iDoorTypes = iDoorTypes
! "_iDoorTypes" variable gets the value of "iDoorTypes" parameter
gosub "exampleScript"
end

"exampleScript":
 __iDoorTypes = _iDoorTypes * 3
 ! "__iDoorTypes" subroutine variable gets the value of 3 times "_iDoorTypes" variable
return

Miscellaneous

GDL Reference Guide 523

Capitalization
• Commands should be written consistently lowercase or uppercase according to your taste. GRAPHISOFT recommends lowercase.
• GDL global variables should always be written uppercase for easier script reading.
• The following keywords should be lowercase: call, goto, gosub, parameters.

Expressions
• Space should be used in front of and behind the following binary operators:

◦ arithmetical: *, /, % (mod), +, -, ^ (**)
◦ logical: & (and), | (or), @ (excluding or), =, <> (#), <, <=, >, >=
◦ assignment: =
E.g.:
a = (b + c % d) * e

• No spaces are allowed in front of and behind the following unary operators:
◦ subscripting: array[25] Note: avoid space inside brackets (array[5]) to make "find" function easier
◦ logical not: not(x)
◦ unary minus, unary plus: -x, +x

• Function calls should have a space in front of the opening parenthesis of the parameter list, and behind every comma separating the
parameters:
abs (signedLength)
minimum = min (a, 25 * b, c)

• When testing equality with constants (e.g. i = 5) the constant should be the second operand.
• When assigning values to Boolean variables the logical expression should be parenthesized:
bBoolValue = (i > j)

• Do not use the Boolean result of logical negation of integer values or variables. E.g. instead of if not(iIntVal) then please use if
iIntVal = 0 then. (Of course, Boolean variables and expressions can be negated, e.g. if not(bBoolVal) then).

• Do not compare Boolean variables and expressions to true or false; use the value of Boolean or its negated value:
bBoolVal = 1
if bBoolVal then ! instead of: if bBoolVal = 1
 ...
endif
if not(bBoolVal) then ! instead of: if bBoolVal = 0
 ...
endif

• Complex expressions (e.g. where and and or are both present) should be parenthesized to clarify precedence.

Miscellaneous

GDL Reference Guide 524

• Put parentheses around rarely used operator combinations.
• Logical expressions consisting of many parts should be placed on multiple lines, and you should also align the sub-expressions or the logical

operators:
bResult = (bValue1 & bValue3 & not(bValueWithLongerName)) | \
 (not(bValue1) & not(bValue3) & bValueWithLongerName) | \
 (not(bValuel2) & bValue3 & not(bValueWithLongerName)) | \
 (bValue2 & not(bValue3) & bValueWithLongerName)

Control flow statements

if - else - endif
Avoid using the one line form of conditional expressions.
To improve code readability, it is essential to express the hierarchy of nested statements. The following example shows the recommended
tabulation of code blocks.
if condition1 then
 statement1
 ...
 statementn
else
 statementn+1
 ...
 statementn+m
endif

if condition2 then
 if condition3 then
 ...
 else
 ...
 endif
 if condition4 then
 ...
 endif
else
 ...
endif

Miscellaneous

GDL Reference Guide 525

for - next, do - while, while - endwhile, repeat - until
To improve code readability, it is essential to express the hierarchy of nested statements. The following example shows the recommended
tabulation of code blocks.
for i = initialValue to endValue
 statement1
 ...
 statementn
next i

do
 ...
 for i = initialValue to endValue
 statement1
 ...
 statementn
 next i
 ...
 bCondition = ...
 ...
while bCondition

Subroutines
Pieces of code that are needed more than once should be turned into subroutines. This makes later corrections less risky, and the code more
structured. The label of the subroutine should correspond with its function. Do not use numbers as names, it makes the code unreadable.
Variables used and declared only inside a subroutine should start with double underscore.
Style (italic texts should be replaced implicitly):

Miscellaneous

GDL Reference Guide 526

! ==
! Short description of the functionality
! --
! Input Parameters:
! par1: short description (type)
! par2: short description (type)
! ...
! Output:
! par1: short description
! ...
! Remark:
! Remarks for the caller
! Description of key points of the implementation
! ==

subroutine_title:
 ! body
return

You should write the body of the subroutine indented by one tabulator field to the right.
You should leave two empty lines behind the closing 'return' of the subroutine.
You should write one statement per line.
Subroutines shouldn't be longer than 1-2 screens (about 80 lines) if possible.
Check all incoming parameters for validity and/or declare the restriction in comment
The call and parameters keywords are lowercase.

Writing comments
The language of the comments should be English; avoid bad words.
You should use the following style for comments:

Script header
It is only a recommendation

Miscellaneous

GDL Reference Guide 527

! <contact person initials>
! ==
! One sentence description of the purpose of the script
! --
! Input Parameters:
! par1: description of the parameter (integer)
! par2: description of the parameter (1 / -1)
! par3: description of the parameter (0 / 1)
! ...
! Output: [if a macro returns values]
! [1]: description of the value (type)
! [2]: description of the value (type)
! [... NSP]: original stack elements
! Remark:
! Longer description.
! Note for the caller
! ==

Any code can come only after this.

Section divide

! ==
! Section name
! ==

The length of the full comment line is 80 characters.
For the subroutines you should always explain the meaning of non-trivial parameters and the return value. E.g. for indices always indicate the
range (starts from 0 or 1, any special values, etc.).
Example in the section called “Subroutines”
You should always indicate with the TODO keyword if you leave something unfinished, it's easy to search for later:

n = 5 ! TODO: set initials; it will be computed from the length

Miscellaneous

GDL Reference Guide 528

You can also put optional section descriptions in between the lines of the source code, beginning at the current tab depth. You can also add
short explanations to the end of the source line by adding a tab at the end; or, if there are more of those, you can align them with tabs.
You should always add comments:
• For unusual solutions
• If it would help others understand the code more quickly.
• If something is forbidden or not recommended for others.
Optional (others will be thankful) if it helps in any way.
Do not let the comments break the rhythm of the code, or the merits of the code.
When commenting a coherent code block, you may use the following format:

! == code block name ===[
statement1
...
statementn
!]=== code block name ===

This facilitates the isolation of the block by the look plus some editors support the search for the matching bracket by a shortcut (e.g.: ctrl
+] in Microsoft Visual Studio)
Comment the end of 'if' statements if there are many code lines between if and endif as follows:

if condition1 then
 ...
 if condition2 then
 ...
 ! many statements
 ...
 endif ! if condition2

endif ! if condition1

Some script types (Forward and Backward Migration Scripts especially) have a recommended form of separators and structures. For examples,
see the ARCHICAD library or the section called “Basic Technical Standards”.

Miscellaneous

GDL Reference Guide 529

Script structure
Set your editor to use 4 character wide tabs. Spaces should never be used to tabulate lines. Instead, use spaces to adjust expressions to each
other inline.
The maximum length of the lines is 120 characters. Statements shouldn't even get close to this number. In case they do, you get a warning.
All file name references are case sensitive in scripts, the extensions accordingly.
Values used multiple times should be calculated directly before the block of usage if it can be well localized or at the beginning of the script
otherwise. There is no compromise. Calculate complex values only once to spare calculation time by storing them in variables (but do not waste
variables unnecessary) or in the transformation stack (add, rot, etc.).
The object scripts are linear which makes them clearer. Subroutines should only break it when a calculation or model generation segment is
needed more than once, or for script readability. Avoiding coding the same thing twice is an important principle in all programming languages.
Redundancy makes later changes a lot more difficult.
Try not to use huge choice branches, instead prepare the data for a calculation or generation command in smaller choice-blocks, where you
can avoid redundancy easier.

Miscellaneous

GDL Reference Guide 530

Bad Solution

if bOnHomeStory then
 line_type ltContour
 fill gs_fill_type
 poly2_b 5, 3, gs_fill_pen, gs_back_pen,
 left, 0, 1,
 left, -depth, 1,
 right, -depth, 1,
 right, 0, 0,
 left, 0, -1
endif
if (bOnUpperStory or bOnAboveUpper) and bDrawContBB then
 line_type ltBelow
 fill fillTypeBelow
 poly2_b 5, 3, fillPenBelow, fillBackBelow,
 left, 0, 1,
 left, -depth, 1,
 right, -depth, 1,
 right, 0, 0,
 left, 0, -1
endif

The definition of geometry is duplicated! It could be even worse if the distance between the identical commands were bigger.

Miscellaneous

GDL Reference Guide 531

Good Solution

if bOnHomeStory then
 bPolygon = 1
 line_type ltContour
 fill gs_fill_type
 fillPen = gs_fill_pen
 fillBGPen = gs_back_pen
endif
if (bOnUpperStory or bOnAboveUpper) and bDrawContBB then
 bPolygon = 1
 line_type ltBelow
 fill fillTypeBelow
 fillPen = fillPenBelow
 fillBGPen = fillBackBelow
endif
if bPolygon then
 poly2_b 5, 3, fillPen, fillBGPen,
 left, 0, 1,
 left, -depth, 1,
 right, -depth, 1,
 right, 0, 0,
 left, 0, -1
endif

Prepare your scripts for localization.
Use "asdf" for non-localized strings (e.g. macro calls) and `asdf` for localized strings (e.g. string constants, parameter values).

BASIC TECHNICAL STANDARDS

Introduction
The release of new ARCHICAD® national versions, the growing GRAPHISOFT product line and the BIMcomponents® portal have
dramatically increased the demand for GDL objects and object libraries. As a result, many independent or third party GDL programmers have
started developing libraries or objects for GRAPHISOFT.

Miscellaneous

GDL Reference Guide 532

Basic guidelines are necessary to keep these objects compatible and to achieve the standard of quality people expect from GRAPHISOFT
products. The purpose of this document is to provide guidance to GDL developers in creating objects, with useful tips and tricks, examples,
descriptions of previously undocumented and new ARCHICAD features.

Library part format

File extension
Most GDL Library Objects are saved with the *.gsm extension and they are distinguished by their subtype in ARCHICAD. There is a special
extension, *.gdl (GDL Script Files) for the MASTER_GDL/MASTEREND_GDL files. ARCHICAD handles any GDL Script File starting
with the string "MASTER_GDL..." or "MASTEREND_GDL..." in their file name in a special way. These files can be used to load attribute
definitions, define line types, and materials etc. (more information in The GDL Script Analysis on page 10).

Identification

The identifier

The ID consists of two parts, each 36 hexadecimal characters long. The first 36 characters represent the Main ID and the last 36 characters
represent the Revision ID.
• The Main ID is created when the library part is saved for the first time. It is also modified if the library part is resaved using the "Save

as" command.
• The Revision ID is also created when the library part is saved for the first time but it is modified if the library part is resaved using the "Save"

command. Using the LP_XMLConverter tool a compilation will change the Revision ID and leave the Main ID untouched, of course.
This means that Main ID identifies a library part in its function and the Revision ID helps in distinguishing the revisions of the object. Let's
see this in practice.

Library Part Identification
When placing an object in ARCHICAD, the program stores the reference by the ID and considers the name only for objects without an ID
(library parts saved before ARCHICAD 8 and .gdl files). In case of Library Parts coming from versions earlier than ARCHICAD 8, there was
no such thing as a GUID. So when such a Library Part is encountered in the file, ARCHICAD will fill out its ID with zeros.

Miscellaneous

GDL Reference Guide 533

When loading a library, ARCHICAD uses the following hierarchical criteria for matching loaded library parts to objects already placed in the
project:
• In case the stored ID is valid:

• ARCHICAD tries to get an exact match of both parts of the ID
• Failing that, ARCHICAD tries to match the first part of the ID, which is the Main ID.
• In case it doesn't find one matching, it starts to check other elements' Migration Table values to find a substitute.
• Finally, when loading files saved before ARCHICAD 12, ARCHICAD tries to match by library part name.

• In case the stored ID is zero, the identification procedure tries to match by name only.
The same process is executed when looking for macros in a placed element as every library part contains a lookup table for its called macros'
GUIDs. Naturally, when saving an object containing macro calls, this table is collected using a name-based search in the currently loaded library.

How to know what the exact GUID of a Library Object is
For this you have to get to know the Subtype Hierarchy dialog window. In this dialog you can see the subtype hierarchy of the currently loaded
library in a tree view. The main attributes - name, version, ID, file location, flags indicating if the object is template or placeable - of the selected
library part are displayed in the bottom of the window.
This dialog appears in 3 contexts:
• Open Object by Subtype... (in File menu)
• Select Subtype... (in the Library Part Editor window)
• Place All Objects (in the Special menu)
Naturally, you can read the ID in the XML format of the library part (location: xpointer (/Symbol/@UNID)). To get this, use the
LP_XMLConverter tool.

Compatibility issues
The most important principle is that the Main ID represents a constant functionality to the users of the library. This means that if you publish
a new library part using a Main ID that is already in use by an old library part, when loading an old project with the new library, the old placed
elements will be replaced by the new object. This contradicts the users' expectations, such as there will be no change in the object's parameters
and their functions. If you want to change the name or the function of old parameters, generate a new Main ID and use migration scripts to
avoid ambiguity and unexpected data loss. Make sure that this new Main ID is unique - not identical with any other ID in the library.
Note, that renaming an object won't make it incompatible with its past self for ARCHICAD as long as their MainIDs remain identical. Similarly,
giving the name of an existing library part to a new one (with a new ID) will not make them compatible.
This issue effects the localization of libraries, too. If you have string type controlling parameters, the relevant values will differ between national
versions. For example: if you are unaware of the problem, loading a German plan file with the Danish sibling library will change the generated

Miscellaneous

GDL Reference Guide 534

elements since some control parameters have meaningless values. There are two solutions. The easy way is to declare that the German and
Danish libraries have nothing to do with each other and to change the Main IDs in localization consequently. The second - and more user
friendly - solution is to create an integer type control parameter acting as string (see VALUES). These integer parameters are determinant, the
visible string descriptions are just an input method for them (therefore localizations can be different, but the true meaning will stay the same).
When writing a script, the integer parameter values should be used.
The following example code features a detail level integer parameter acting as a string type:

! Master script:
dim stDetlevel3DDesc [3]
stDetlevel3DDesc[1]=`Detailed`
stDetlevel3DDesc[2]=`Simple`
stDetlevel3DDesc[3]=`Off`

! iDetlevel3D constants
DETLEVEL3D_DETAILED = 1
DETLEVEL3D_SIMPLE = 2
DETLEVEL3D_OFF = 3

! Parameter script:
values{2} "iDetlevel3D" DETLEVEL3D_DETAILED, stDetlevel3DDesc[1],
 DETLEVEL3D_SIMPLE, stDetlevel3DDesc[2],
 DETLEVEL3D_OFF, stDetlevel3DDesc[3]

Migrating Elements
It is possible to maintain a link between the old and the new, updated version (with new Main ID) of a library part by using migration scripts
(the section called “Forward Migration script”, the section called “Backward Migration script”) and the section called “Migration table”.
In these scripts you can define which library part substitutes which (by connecting the old and new Main ID-s), and how to update the new
object's parameter values based on the old one (or vice versa). You can set rules for the migration to happen only under certain parametric
conditions. If the subject of the migration meets these, the upgrade or downgrade is possible, otherwise it will not be an option.

Miscellaneous

GDL Reference Guide 535

Generally, it is possible for the subject of the migration to have one or more successors (or ancestors in backward migration) depending on
parameter settings. The case is a little different when migrating Zone Stamps, though. One type of Zone Stamp can be linked to many Zone
Categories. But each category can use only one kind of Zone Stamp. When migrating a Zone Stamp, the Category stays the same. If the route of
migration diverges ("Zone Old" is upgraded to "Zone New 1", or to "Zone New 2", depending on different parameter settings), it is possible
to get a Category with two different Stamps linked. While this is a valid result regarding the migration process, it is an inconsistent situation
for ARCHICAD. Make sure you only migrate Zone Stamps in a direct way, to avoid this.

General scripting issues

Numeric types - Precision
Before ARCHICAD 9 all numeric values were stored internally as floating point values which resulted in imprecise vaules. This meant that
integer values were - a little - imprecisely stored. From ARCHICAD 9 integers - and hence GDL parameter types that are best described with
integers - are correctly stored internally as integers.
Parameter types internally stored as an Integer:
Integer,
Boolean,
Material,
Line type,
Fillpattern,
Pencolor,
Intensity (Light)

Parameter types internally stored as a Floating-point number:
Length,
Angle,
Real,
RGB Color component (Light)

GDL variables still don't require type definition, the type is determined during the interpretation from the value to be loaded into the variable.
The output of numeric operators now have a type. You should consult the GDL Manual for this information.
The programmer can safely compare integer types with the equality operator. In fact, from ARCHICAD 9 warnings are now issued, if a
programmer tries to directly compare floating point values with integer values using the equality operator. For equality-comparisons of floating-
point numbers use a small epsilon value meaning the precision of the comparison. For equality-comparisons of a floating-point number and
an integer use the round_int function.

Miscellaneous

GDL Reference Guide 536

Below some sample methods of testing for equivalence between different numeric types are described:

iDummy = 1 * 2
if iDummy = 2 then
 ! valid comparison, it is true, these statements will be executed
 ...
endif

dDummy = 1.5 + 0.5
if dDummy = 2 then
 ! you never know if it is true, don't trust such comparisons
 ...
endif

dDummy = 1.1 * 2
if dDummy = 2.2 then
 ! you never know if it is true, don't trust such comparisons
 ...
endif

! EPS = 0.0001 -> in the master script
dDummy = 1.1 * 2
if abs (dDummy - 2.2) < EPS then
 ! valid comparison, it is true, these statements will be executed
 ...
endif

dDummy = 1.5 * 2
if round_int (dDummy) = 3 then
 ! valid comparison, it is true, these statements will be executed
 ...
endif

Miscellaneous

GDL Reference Guide 537

Trigonometry functions
While GDL scripting, you may need various trigonometry functions. The following functions are directly available from GDL: cos, sin,
tan, acs, asn, atn.
All other functions can be easily derived as follows.

Secant Sec(X) = 1 / cos(X)
Cosecant Cosec(X) = 1 / sin(X)
Cotangent Cotan(X) = 1 / tan(X)
Inv. Sine Arcsin(X) = atn(X / Sqr(-X * X + 1))
Inv. Cosine Arccos(X) = atn(-X / sqr(-X * X + 1)) + 2 * atn(1)
Inv. Secant Arcsec(X) = atn(X / sqr(X * X - 1)) + sgn((X) -1) * 2*atn(1)
Inv. Cosecant Arccosec(X) = atn(X / sqr(X*X - 1)) + (sgn(X) - 1) * 2*atn(1)
Inv. Cotangent Arccotan(X) = atn(X) + 2 * atn(1)
Hyp. Sine HSin(X) = (exp(X) - exp(-X)) / 2
Hyp. Cosine HCos(X) = (exp(X) + exp(-X)) / 2
Hyp. Tangent HTan(X) = (exp(X) - exp(-X)) / (exp(X) + exp(-X))
Hyp. Secant HSec(X) = 2 / (exp(X) + exp(-X))
Hyp. Cosecant HCosec(X) = 2 / (exp(X) - exp(-X))
Hyp. Cotangent HCotan(X) = (exp(X) + exp(-X)) / (exp(X) - exp(-X))
Inv. Hyp. Sine HArcsin(X) = log(X + sqr(X * X + 1))
Inv. Hyp. Cosine HArccos(X) = log(X + sqr(X * X - 1))
Inv. Hyp. Tangent HArctan(X) = log((1 + X) / (1 - X)) / 2
Inv. Hyp. Secant HArcsec(X) = log((sqr(-X * X + 1) + 1) / X)
Inv. Hyp. Cosecant HArccosec(X) = log((sgn(X) * sqr(X * X + 1) +1) / X)
Inv. Hyp. Cotangent HArccotan(X) = log((X + 1) / (X - 1)) / 2

Note:

Logarithm to base N LogN(X) = log(X) / log(N)

GDL warnings
Like any other programming language, GDL has a syntax and logic to be followed. If there is a mistake in syntax, the programmer gets an error
message. If there is something confusing, or some unexpected thing happens when running the script, a GDL warning is sent out.
You can choose WHERE you want to send these messages in Options/Work Environment/Model Rebuild Options:

Miscellaneous

GDL Reference Guide 538

• Interrupt with error messages: a dialog pops up at every problem
• Write Report: the message is written in the Report window
You can choose WHAT you want to send out as message: this setting is available in the Library Developer menu, called "Check Library Part
Scripts for Warnings". When enabled, not only errors, but warnings get reported as well according to the WHERE settings.
You can also choose WHEN you want to see warning messages. This can be set in the Library Developer menu as well, called "Always Send
GDL Messages". Turning this feature on, every time GDL is executed, the warnings and errors get force-reported anyway. Leaving it off,
the warning report contexts stay as usual.
Note, that using some combinations of the above switches can result in difficulties: for example, having the "Always Send GDL Messages"
and the "Interrupt with error messages" enabled together may prevent the execution of something as "simple" as moving an editable hotspot,
popping up dialogs all the time.
Pressing "Check script" in the library part editor, if there is a problem with your script using the current parameter settings, you will always
get a warning or error message popup window. Using the PRINT command, or the GDL debugger may help a lot locating mistakes hard
to find otherwise.
Note that the line numbers in the GDL warnings refer to the script which contains the problem.
Parsing errors must be handled with extra care. These denote the first line in which the parsing gets impossible but the actual problems may
be some lines before.
Example
The interpreter detects the missing statement first at the endif and stops there; though the problem is obviously around line 4 where an
endif is really missing.

if condition1 then
 if condition2 then
 ! do something

 ! do something - BUT WE MISSED AN 'endif'
else
 ! a potentially long code block
endif

Miscellaneous

GDL Reference Guide 539

Here are some examples of the latest warning messages developed, with some explanation:

Warning message Possible explanation

Simple parameter redeclared as an array specifying a simple parameter in an object and using it as an array in
the called macro

Undefined parentId "id" used in UI_PAGE definition missing parent ID in tabpage hierarchy

View/Project dependent global "globalName" used in parameter script see the section called “Global Variables”

Request "requestName" used in parameter script see the section called “REQUEST Options”

Application query "applicationQueryName" used in parameter script see the section called “Application Query Options”

Possibly unwanted parameter type change a parameter receives a value not supported by its original type

Hotspot and Hotline IDs

Purpose of hotspot/hotline/hotarc identification
In ARCHICAD the hotspot/hotline/hotarc identification is introduced to support associative dimensioning in section. Via this feature a
dimensioning item can refer to any of a GDL object's hotspots/hotlines. It will become an important issue when the number of hotspots/
hotlines changes between the object's different parameterization states.

Problem of old-school hotspots/hotlines
If the programmer doesn't specify hotspot/hotline/hotarc IDs - or if he sets them to 0 - ARCHICAD will assign continuously increasing ordinal
numbers. This solution is correct for static objects but causes dimensioning problems when some hotspots/hotlines appear or hide between
parameter set-ups. Namely, the IDs will be rearranged so they will change, and the associative dimensioning items - in section - will go astray.

Miscellaneous

GDL Reference Guide 540

Correct hotspot/hotline/hotarc scripting
For all these reasons you should assign fix IDs to the hotspots/hotlines in your objects. This can be done by reserving wide intervals for the
hotspots/hotlines of individually controllable features.
Let's take a stair for example. The bounding hotspots/hotlines may use the [1-100] interval, the handrails may use the [200-299] interval and
the risers the [1000-) one. This guarantees that the dimensioning of the handrails won't be corrupted if the number of risers changes or even
if the bottom connection gets more complex (using more hotspots/hotlines).

Editable hotspots
Since ARCHICAD 8 release you can use editable hotspots in your library parts. The feature is described in Graphical Editing Using Hotspots
except for one possibility.
In some cases you may want to display a different parameter from the edited one. See the example code below:

Editable hotspot example - Shoe / Shoe-rack
We want to have the size of a shoe in meters and in shoe sizes, too. For that we create two parameters and connect them in the parameter script.
Naturally, the type of the explaining parameter can be different (e.g. text). We emphasize that the edited parameter is footLength all the
way, footSizeEU - the displayed parameter - must be updated via the parameter script.

2D editing

Miscellaneous

GDL Reference Guide 541

Parameter script

DIM lengthValues[10]
DIM sizeValues[10]
for i = 1 to 10
 sizeValues[i] = i + 35
 lengthValues[i] = (i + 35) * 0.007
next i

values "footLength" lengthValues
values "footSizeEU" sizeValues

if GLOB_MODPAR_NAME = "footLength" then
 parameters footSizeEU = round_int (footLength / 0.007)
else
 if GLOB_MODPAR_NAME = "footSizeEU" or GLOB_MODPAR_NAME = "" then
 parameters footLength = footSizeEU * 0.007
 endif
endif

2D script

Miscellaneous

GDL Reference Guide 542

rect2 0, 0, footLength * 0.4, footLength ! or a more realistic shoe model

hotspot2 0, 0, 1, footLength, 1 + 256, footSizeEU
hotspot2 0, footLength, 2, footLength, 2, footSizeEU
hotspot2 0, -0.1, 3, footLength, 3

GDL execution contexts
ARCHICAD lets the GDL object know about the context it is being displayed or used in. The next global variables are used for this purpose:
• GLOB_VIEW_TYPE to determine the active view
• GLOB_PREVIEW_MODE to determine the active preview
• GLOB_FEEDBACK_MODE for editing context indication
• GLOB_SEO_TOOL_MODE for solid element operations context indication
For the possible values refer the the section called “General environment information” and the following list:
GLOB_VIEW_TYPE = 2 - 2D, floor plan
The model is displayed in the standard 2D floor plan. In a 3D script this means that the model is projected to 2D via the project2D
command. This is the main use of an object - this 2D model must be always correct and efficient.
If GLOB_FEEDBACK_MODE = 1 then the model is displayed via feedback lines on the 2D floor plan during the hotspot editing of the
object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent the
essential parts of the object only. Note, that texts (generated by text2 command) are not refreshed in feedback mode - since it would slow
down the output.
GLOB_VIEW_TYPE = 3 - 3D view
The 3D model is displayed in the standard 3D model window or it is the source of photorealistic rendering. This view should omit internal
details of the object, since these cannot be seen anyway. This is the second most important use of an object - the 3D model must be always
correct and efficient. This target type demands correct outside look.
If GLOB_FEEDBACK_MODE = 1 then the 3D model is displayed via feedback lines in the 3D model window during the hotspot editing
of the object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent
the essential and visible parts of the object only.
GLOB_VIEW_TYPE = 4 - section or GLOB_VIEW_TYPE = 5 - elevation
The 3D model is displayed in a section/elevation window. For these views, the object should generate internal details which are unnecessary
for every other view type.

Miscellaneous

GDL Reference Guide 543

If GLOB_FEEDBACK_MODE = 1 then the 3D model is displayed via feedback lines in a section/elevation window during the hotspot
editing of the object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should
represent the essential and visible parts of the object only.
GLOB_VIEW_TYPE = 6 - 3D document
The 3D model is displayed in an axonometric window as a drawing. This is used for documentation, dimensioning in 3D.
GLOB_VIEW_TYPE = 7 - detail drawing
The model is used in a detailed drawing window. The model can be more detailed than in other views consequently. The 2D and 3D models
are not distinguished - that information can be derived from the script type.
GLOB_VIEW_TYPE = 8 - layout
The model is used in a layout window, with its print display. The model should show its printing look. The 2D and 3D models are not
distinguished - that information can be derived from the script type.
If GLOB_FEEDBACK_MODE = 1 then the model is displayed via feedback lines in a layout window during the hotspot editing of the
object. This model is drawn many times in a single second throughout the user interaction. This implies that the model should represent the
essential and visible parts of the object only.
GLOB_VIEW_TYPE = 9 - calculation and/or GLOB_PREVIEW_MODE = 2 - listing
The 3D model is used for surface and volume calculation by the listing engine. This context is the proper place to do some model alterations
for listing. E.g. you can generate extra bodies to raise the surface to be painted and the amount of required paint. Use the combination of the
2 globals for the desired result in calculation and listing model generation.
GLOB_PREVIEW_MODE = 1 - settings dialog
The model is displayed in the Object Settings Dialog's preview box. The 2D and 3D models are not distinguished - that information can be
derived from the script type. The object should provide a fast, rough preview of the model considering the limited size of the preview.
GLOB_SEO_TOOL_MODE = 1 generating as an operator for Solid Element Operations
The generated 3D model is used as a parameter for solid (CSG) operations. This can be useful, when the object's space demand is larger than
the object itself. E.g. when you subtract a stair from a slab, you'd expect that the stair cuts a hole for the walking people, too. To achieve this,
in this context the stair should generate a model containing that walking space.

Communicating values with ARCHICAD
There are two directions of parameter value flow between ARCHICAD and the library part. The first direction means that the ARCHICAD
informs the library part about an attribute of its context (e.g. the drawing scale of the project or the thickness of the wall a window is placed
into). The second direction is when the library part asserts something about itself which instructs ARCHICAD to change that something in
the direct context of the object (e.g. the depth a wall end cuts in the wall).

Miscellaneous

GDL Reference Guide 544

Information flow from ARCHICAD
There are 3 channels of information coming from ARCHICAD: global variables, parameters with predefined names and directly called values.

Global variables
Global variables are filled by ARCHICAD according to the current project settings and to the placement context of the object. Note, that not
all globals are filled in every context and view.
For the complete list of global variables and their relevant restrictions in certain scripts, consult the section called “Global Variables”.

Fix named optional parameters
The newer method of ARCHICAD for providing information is the method of fixed named optional parameters. If a given library part has a
parameter with a name and type matching any optional parameter, ARCHICAD sets its value according to its function.
Refer the section called “Parameters set by ARCHICAD” in the section called “Fix named optional parameters” to learn the ARCHICAD defined library part
parameters.

Requests and Application Queries
For rarely used, special information, library parts use Request calls or Application Queries in their scripts. Unlike global variables, these only
give a return value when the containing actual scripts runs. Note, that most requests and queries should be avoided in a parameter script, or a
master script run as a parameter script. If used in those scripts, the validity of the returned value or the function can not be guaranteed.
Refer the section called “REQUEST Options” and the section called “Application Query Options” to learn more about options, parameter script compatibility and
syntax.

Information coming from the library part
ARCHICAD needs certain informations to use the library parts correctly. These informations depend on the function and the context, and are
stored in the built-in ARCHICAD subtypes as parameters with predefined name and function. In addition to built-in ARCHICAD subtypes
some functions might need fixed named optional parameters.
Consult the fix parameters of built-in subtypes and the section called “Parameters read by ARCHICAD” in the section called “Fix named optional parameters”
to get a view of the possibilities.

Model View Options, Library Global
The display of library parts in the plan may depend on the current view.

Miscellaneous

GDL Reference Guide 545

Internal Model View Options
The view's internal settings are available via GDL global variables (e.g. GLOB_SCALE, GLOB_STRUCTURE_DISPLAY) and request options
(e.g. "window_show_dim", "door_show_dim", "floor_plan_option", "view_rotangle").

Library Global View Options
From ARCHICAD 13 on, you can define view options from your library. These options are stored into each view and they are returned
accordingly.
The following properties/parameters/options should be stored in view dependent library globals:
• showing/hiding opening lines
• showing/hiding minimal spaces
• pen and other view attributes which shouldn't be changed individually for the sake of uniformity (e.g. minimal spaces)
• showing/hiding specific accessory elements (e.g. knobs, handles)
• setting 2D symbol types for object groups
Things which should NOT be stored in view dependent library globals: general values for the whole project, general values for the whole
country, values which may be required to be set individually for objects.
To insert a tab page into the MVO dialog, you have to make a library part which is derived from the Library Global Settings (GUID:
{709CC5CC-6817-4C56-A74B-BED99DDB5FFA}) subtype. This object must contain the desired global options as parameters and it must
have a user interface definition for the tab page. The width of the UI should be set to 600 pixels to match the existing panels. The height of the
UI is freely definable. It may have a parameter script for connecting parameters or user interface elements.
The LIBRARYGLOBAL command can be used in your placeable elements to query values of your own library global settings object depending
on the current view settings.

Script type specific issues

Master script
When writing the master script you should keep in mind that it will be evaluated before the run of each script by ARCHICAD. This implies
the following things:
• Placing parameter definitions and calculations used by multiple scripts in the master script is a good idea: it reduces file size and makes

elements easily modifiable.
• Be sure to put only common calculations here to avoid an unnecessary increase of the evaluation time of the libpart (remember that master

script is evaluated before each and every script).

Miscellaneous

GDL Reference Guide 546

• Avoid using the parameter buffer in the master script for effectiveness reasons.
• Do not put end commands in the master script; otherwise, ARCHICAD will not run the rest of the scripts.

2D script

Execution context
The 2D script is executed when a 2D model is generated:
• 2D plan
• 2D editing feedback
• 2D preview in the Object Settings dialog window
• Layout drawing
• Layout drawing feedback
Mind that most of the architectural design is done in 2D, so usually this model is the most important. This implies requirements of exact look,
fast generation time and proper function when editing via hotspots.

General recommendation
Try to avoid using fragments and the binary 2D format in order to make objects modifiable.
2D script is much more customizable than the 2D symbol, prefer this solution. In a binary 2D symbol, the curved fills aren't stretched correctly,
you don't have to face this problem in 2D scripting, either.

Defining line and fill properties
From ARCHICAD 9 on you have the possibility to choose from several main categories of lines and fills from GDL. Lines and polygon segments
can be defined as contour, inner or general; fills can be defined cut, cover or drafting. These categories are described in the ARCHICAD user
documentation, let's see how we use them in GDL objects.
Setting the correct properties for lines and fills will enable you to eliminate the display-option dependence from your scripts. Formerly, you had
to add a condition for drawing of some inner lines according to the set display option. Now you should define an inner line for that purpose
and ARCHICAD will display it or not as implied by the display options.
Let's see the extract of the 2D script of a window to summarize the definition cases:

Miscellaneous

GDL Reference Guide 547

! ===== Sill =====

line_property 0 ! general lines

! the sill is seen from above -> cover fill
poly2_b{2} 4, 1 + 2 * (gs_fillSillCover > 0) + 4 + 64, ...
...

! ===== Wall segment / Cavity Closure =====

line_property 1 ! inner lines
line2 ...
...

line_property 2 ! wall contours
line2 ...
...

! wall segment is seen cut -> cut fill
poly2_b{2} 4, 2 + 4 + 8 + 16 + 32, ...

! ===== Window Frame =====

line_property 0 ! general lines

! side window frame is seen cut -> cut fill
poly2_b{2} 4, 1 + 2 * (gs_fillFrames > 0) + 4 + 32, ...
...

3D script

Execution context
The 3D script is executed each time a 3D model is generated:
• 3D window (wire, hidden line, solid model)
• 2D plan when project2 is used to project the 3D model to 2D

Miscellaneous

GDL Reference Guide 548

• 2D section - mind the details
• 3D editing feedback - optimize for speed
• Operator for solid operations in 3D - ask the designer for the desired functionality
• Surface and volume calculation for Listing
• 3D preview in the Object Settings dialog window
• Layout drawing when project2 is used to project the 3D model to 2D
• Layout drawing feedback

General recommendation
Try to avoid using binary format in order to make objects modifiable.
Use status codes to control the visibility of the objects in hidden line views. Make the contour lines of curved surfaces visible. Hide unnecessary
lines when it is possible.
Define editable hotspots instead of fix ones whenever possible.
Don't use del top command to make later modifications easier.
Always restore the global coordinate system at the end of the 3D script and follow it with an end command to make further modifications
on the object easier.

Modeling transparent bodies
Use the body -1 command between solid and transparent parts of an object to make correct shadow casting with Internal Rendering Engine
(e.g., window sash with grilles).

Miscellaneous

GDL Reference Guide 549

Table 7. Examples for transparent bodies

Incorrect Correct

prism_ 10, 0.1,
 0, 0, 15,
 1, 0, 15,
 1, 1, 15,
 0, 1, 15,
 0, 0, -1,
 0.1, 0.1, 15,
 0.9, 0.1, 15,
 0.9, 0.9, 15,
 0.1, 0.9, 15,
 0.1, 0.1, -1

material "blueglass"

prism_ 5, 0.1,
 0.1, 0.1, 15,
 0.9, 0.1, 15,
 0.9, 0.9, 15,
 0.1, 0.9, 15,
 0.1, 0.1, -1

prism_ 10, 0.1,
 0, 0, 15,
 1, 0, 15,
 1, 1, 15,
 0, 1, 15,
 0, 0, -1,
 0.1, 0.1, 15,
 0.9, 0.1, 15,
 0.9, 0.9, 15,
 0.1, 0.9, 15,
 0.1, 0.1, -1

body -1

material "blueglass"

prism_ 5, 0.1,
 0.1, 0.1, 15,
 0.9, 0.1, 15,
 0.9, 0.9, 15,
 0.1, 0.9, 15,
 0.1, 0.1, -1

Miscellaneous

GDL Reference Guide 550

Texture mapping
Always check if texture mapping is applied correctly on your objects. If the default ARCHICAD texture mapping process doesn't produce a
good result, use the coor command to set the correct method. See the case below for example.

Miscellaneous

GDL Reference Guide 551

Table 8. Example code for random and for correctly aligned tiling

Random texture Aligned texture

define texture "owntile" "T.jpg",
 1, 1, 128+256, 0

define material "tilemat" 21,
 0.7, 0.7, 1,
 0.15, 0.95, 0, 0.0,
 0, 0,
 ind (fill, ""), 1,
 ind (texture, "owntile")

material tilemat

block 1, 1, 1

define texture "owntile" "T.jpg",
 1, 1, 128+256, 0

define material "tilemat" 21,
 0.7, 0.7, 1,
 0.15, 0.95, 0, 0.0,
 0, 0,
 ind (fill, ""), 1,
 ind (texture, "owntile")

material tilemat

block 1, 1, 1

base
vert 0, 0, 0
vert 1, 0, 0
vert 0, 1, 0
vert 0, 0, 1

coor 2 + 256, -1, -2, -3, -4

Miscellaneous

GDL Reference Guide 552

In general, separate bodies which require different texture coordinate systems with a body -1 command.
When using different texture mapping modes, you should take care of correct axis definitions with the vert or teve commands. The node
order is shown below.

You can distort the textures by setting different distances between the nodes defined by the vert or teve commands.
Take care that working with different rendering engines can produce slightly different results, see the examples.
Internal engine:

C4D engine:

Miscellaneous

GDL Reference Guide 553

Correct texture mapping on complicated surfaces or distorted textures can be modeled with coor and teve commands. In this way you can
make surface models only. In ARCHICAD, there is no direct texture specification. You can define a texture as a part of a material definition.
This texture is used in Rendering Engines and in OpenGL – but in OpenGL we have only limited implementation of our full texture mapping,
and no texture (fill) mapping in our Internal 3D Engine at all.
So with TEVE command you can map a planar texture point (u,v) to a spatial geometric point (x, y, z):
• (x, y, z) is measured in meters in the local coordinate system, as usual
• (u, v) is measured in units in the infinite texture space. One unit is as long as the texture extent in that direction.
You can give a negative or more than one value for either u or v.
See the example 1:

Miscellaneous

GDL Reference Guide 554

Table 9. Teve example 1: mapping with no distortion

Program Logic Result

base

teve 0, 0, 1, 0, 0
teve 2, 0, 1, 1, 0
teve 0, 2, 1, 0, 1
teve 2, 2, 1, 1, 1
teve 0, 0, 1, 1, 1

edge 1, 2, -1, -1, 0
edge 2, 4, -1, -1, 0
edge 4, 3, -1, -1, 0
edge 3, 1, -1, -1, 0

set material 92

pgon 4, 0, 0, 1, 2, 3, 4
coor 1024, 1, 2, 3, -5

body -1

If you make a non-regular mapping, the Rendering engine will fit the shape in texture space to the shape in model space:

Miscellaneous

GDL Reference Guide 555

Table 10. Teve example 1: mapping with distortion

Program Logic Result

base

teve 0, 0, 1, 0, 0
teve 2, 0, 1, 1, 0
teve 0, 2, 1, 0.3, 0.5
teve 2, 2, 1, 1, 1
teve 0, 0, 1, 1, 1

edge 1, 2, -1, -1, 0
edge 2, 4, -1, -1, 0
edge 4, 3, -1, -1, 0
edge 3, 1, -1, -1, 0

set material 92

pgon 4, 0, 0, 1, 2, 3, 4
coor 1024, 1, 2, 3, -5

body -1

The same is true for real 3D bodies, as you can see in this example:

Miscellaneous

GDL Reference Guide 556

Table 11. Teve example 1: mapping with distortion on a pyramid

Program Logic Result

base

teve 0, 0, 1, 0, 0 ! 1
teve 2, 0, 1, 2, 0 ! 2
teve 2, 2, 1, 2, 2 ! 3
teve 2, 2, 1, 0, 2 ! 4
teve 1, 1, 3, 1, 1 ! 5

edge 1, 2, -1, -1, 0
edge 2, 4, -1, -1, 0
edge 4, 3, -1, -1, 0
edge 3, 1, -1, -1, 0

set material 92

pgon 3, 0, 0, 1, 6, -5
coor 1024, -6, -7, -8, -9

body -1

Please note, that you can assign only one texture vertex for a model vertex. It is not possible to assign the texture vertices on a per polygon
basis. It is sometimes an advantage and sometimes a disadvantage.

Picture elements
It may be a good idea to replace complicated parts of a model with a single picture. This method can be well used for trees and bushes.
Using an external image referred by its file name, don't omit the file extension.
When you place a picture in a 3D model using the picture command, a polygon will be created using the picture as a face. The material of the
polygon affects the result of the rendering. With this in mind you should use a matte surface - the color may be chosen depending on the picture.

Miscellaneous

GDL Reference Guide 557

define material "pictmat" 2,
 1, 1, 1 ! RGB

material "pictmat"

picture "filename.extension", a, b, mask

The first picture shows a picture on a shiny surface - the undesired side-effect can be observed. In the second picture you can see a texture
on a precisely set material - the wanted result.

Table 12. Transparent images
Shiny surface Matte surface

For transparent images - like the tree above - you should consider a more precise definition of the base material. See the following example.

define material "pictmat" 0,
 1, 1, 1, ! RGB
 0.5, 0.8, 0, 0,
 0, 0,
 0, 0, 0,
 0, 0, 0,
 0

material "pictmat"

picture "filename", a, b, mask

Group operations
Group operations bring the power of solid operations into GDL. On the other hand they present a risk factor when misused.

Miscellaneous

GDL Reference Guide 558

An important point is that you mustn't place a group inside another one. In such situations you should define a new group like in the source
snippet below:
subtractionResult = subgroup ("sub_operand_1", "sub_operand_2")

Parameter script

Execution context
The parameter script is run in the following cases:
• Opening the Object Settings dialog window
• Changing a parameter's value in the Object Settings dialog window
• Changing a parameter's value using editable hotspots (even while generating the feedback)
• Stretching the object using conventional hotspots
• loading step-by-step migration libraries (starting from AC18)
The parameter script MAY be run on:
• Dragging the object, in case the object refers to SYMB_POS_X/SYMB_POS_Y
• Update Zones runs the parameter script of the affected zones if necessary
The parameter script is NOT run on:
• Rebuild
• Changing scale
• Changing story
Editing multiple selection may result unintended parameter values.
Note that the parameter script may be run multiple times on a single user interaction. The reason for this is that the parameter script can change
the value of parameters and this requires the parameter script to be run again, and so on. Therefore it makes no sense to increase a parameter
value by one in the parameter script since you may not be able to predict the cardinality of executions.
The run of the parameter script is linear, and not necessarily multiple. You can force the parameter script to start only once by checking the
Run the parameter script only once option in the object's Compatibility Options panel, if you are sure you don't need it to run many times.
This can make objects react faster, saving time and computing resources.

General recommendation
When you control parameters in the parameter script, try to follow the order of additional parameters.

Miscellaneous

GDL Reference Guide 559

You can define relations between parameters using the GLOB_MODPAR_NAME value (containing the name of the last modified parameter).
For example you can make a circle object for which both the radius and the diameter can be set (maybe one of them via the parameter list and
the other via editable hotspots). Don't use this possibility to define the valid range of parameters - use values command instead.
Define the valid value range for all parameters using the values command.
When resetting the value of a parameter in a certain condition in the Parameter Script using the parameters command, a similar statement
must be put into the Master Script. This keeps the object's display correct in cases when the parameter script is not run by the system. E.g.:

! parameter script
if bCondition then
 yy = 1
 parameters yy = yy
endif

! master script
if bCondition then yy = 1

Font type names
If you want to have a string parameter - named stFont in the sample - for setting the font type for a text, use the following value list definition
to get a platform independent sound solution.

DIM fontNames[]
request ("FONTNAMES_LIST", "", fontNames)
values "stFont" fontNames, CUSTOM

If you do this in the ARCHICAD_Library_Master.gsm object, every loaded library part with the same "stFont" parameter will automatically
receive the same value list.
CUSTOM value is needed to deal with missing or unexpected font types.

Setting limits for array parameters
Array parameters should be used for homogeneous data; i.e. all array elements should have a similar meaning.
Example code snippet for limiting all components of array parameter gridXPosition to the range [1, 5] and how to use it on the UI:

Miscellaneous

GDL Reference Guide 560

! parameter script
values "gridXPosition" range [1, 5]

! UI script
for i = 1 to nGridLines ! nGridLines: number of lines in the array parameter
 ui_infield{3} gridXPosition[i], xPos, yPos, infieldWidth, infieldHeight

 yPos = yPos + diffY
next i

User Interface script

Execution context
The User Interface script is displayed in only one context: the user interface tab page in the Object Settings dialog window.
The script is run on the initialization of the dialog window and after each user interaction and parameter change.

General recommendation
If you want the Custom Settings page to appear in the topmost UI selector as default instead of the parameter list, push the Set as Default
button (or add the "STBit_UIDefault" bit to the "StatBits" section of the XML). Otherwise the parameter list will be the starting tab. For
Hierarchical pages, push the Hierarchical Pages button in the GDL Editor/UI window (or add the "STBit_UIUseHierarchicalPages" bit to
the "StatBits" section of the XML).
When styling texts, note that extra small letters cannot get any style but plain. In addition, Outline and Shadow styles have no effect on Windows
platform.
Note that ARCHICAD tries to match the fonts used in dialogs with the operating systems. When scripting graphical user interfaces on Windows,
leave more space around texts otherwise Mac users will see truncated texts.

Thumbnail control pictures
If you use the ui_infield command to define a thumbnail view field for value lists, be aware of the following. There should be equal sized
thumbnails for all parameter values (including empty value). Thumbnails have to be the same size at which they will be displayed otherwise
ARCHICAD will distort them. We advise you to use ARCHICAD's figure tool for assembling the thumbnails into one picture file.

Miscellaneous

GDL Reference Guide 561

Table 13. Infield with picture

Input picture Output picture

A user interface picture used by only one object should be integrated in the library part file itself. This can be done using the LP_XMLConverter
tool.
When using an external image referred to by its file name, don't omit the file extension. This way, you will avoid errors stemming from pictures
and objects having the same name.
Keep all pictures used by interface scripts in the Macros folder, or embedded in the object itself. Using external images: add the
file_dependence command to make sure they are saved in archive format with the object.

Tab page handling
Starting from ARCHICAD 18, a new hierarchical paging option is available for tabpage selection. This is accessed via the UI_PAGE command,
by adding some extra parameters, and setting the Hierarchical Pages parameter in the object itself. Doing so, a separate popup tabpage control
will appear above the custom UI field. The order and hierarchy of the available pages can be defined by the ID of the pages. Root ID is always
-1. The possibility to set up an "oldschool" tabpage selector within the UI page still remains available.
Let's see an example script:

Miscellaneous

GDL Reference Guide 562

! Master Script

! TabIDs
TABID_ROOT = -1
TABID_PAGE_1 = 50
TABID_PAGE_2 = 60

dim uiUsedPageIDs[][2]
dim uiUsedPageNames[][2]

idxPage = 1

uiUsedPageNames[idxPage][1] = "PageName_1"
uiUsedPageNames[idxPage][2] = "pageIconName_1.png"

uiUsedPageIDs[idxPage][1] = TABID_PAGE_1
uiUsedPageIDs[idxPage][2] = TABID_ROOT ! Parent Page ID

idxPage = idxPage + 1

uiUsedPageNames[idxPage][1] = "PageName_2"
uiUsedPageNames[idxPage][2] = "pageIconName_2.png"

uiUsedPageIDs[idxPage][1] = TABID_PAGE_2
uiUsedPageIDs[idxPage][2] = TABID_PAGE_1 ! Parent Page ID

file_dependence "pageIconName_1.png"
file_dependence "pageIconName_2.png"
file_dependence "pageIconName_3.png"

Miscellaneous

GDL Reference Guide 563

! Parameter Script

dim pageValues[]
for i = 1 to vardim1(uiUsedPageIDs)
 pageValues[i]= uiUsedPageIDs[i][1]
next i

values "gs_ui_current_page" pageValues

! UI Script

ui_dialog "Custom Settings Title"
ui_current_page gs_ui_current_page

for i = 1 to vardim1(uiUsedPageIDs)
 if uiUsedPageIDs[i][1] = TABID_PAGE_1 then
 ui_page uiUsedPageIDs[i][1], uiUsedPageIDs[i][2],
 uiUsedPageNames[i][1], uiUsedPageNames[i][2]
 if gs_ui_current_page = TABID_PAGE_1 then
 gosub "pageSubroutinTitle_1"
 endif
 endif

 if uiUsedPageIDs[i][1] = TABID_PAGE_2 then
 ui_page uiUsedPageIDs[i][1], uiUsedPageIDs[i][2],
 uiUsedPageNames[i][1], uiUsedPageNames[i][2]
 if gs_ui_current_page = TABID_PAGE_2 then
 gosub "pageSubroutinTitle_2"
 endif
 endif
next i

Miscellaneous

GDL Reference Guide 564

! ==
! Call User Interface Macro's TabPages
! ==

call "ui_customMacro" parameters all uiUsedPageIDs = uiUsedPageIDs,
 uiUsedPageNames = uiUsedPageNames

! ==
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
! ==

! ==
! UI Page Subroutines
! ==

"pageSubroutinTitle_1":
 ! UI Page 1 description
return

"pageSubroutinTitle_2":
 ! UI Page 2 description
return

Thumbnail controls with dynamic items
From ARCHICAD 10 on, a new dynamic method is available for linking control items and value list items. Using this method you can localize
the logic of the availability of parameter values to the parameter script - the control will adopt the set of available values. This dynamic linking is
available for ui_infield{3} and ui_infield{4}. The old-style static linking is still working for static functions (using ui_infield
and ui_infield{2}).
The two components of the dynamic method are:
1. Define the user interface control with an option for every possible value.
The example shows a popup menu control (method = 2) which uses an index image containing 2 rows and 4 columns. The sample control
supports 8 possible values.

Miscellaneous

GDL Reference Guide 565

ui_infield{3} iJunctionType, xColumn1-10, 44, 200, 50,
 2, 3, 8, 2,
 70, 45, 70, 45,
 1, `Junction Type A1`, 2,
 2, `Junction Type B1`, 4,
 3, `Junction Type C1`, 1,
 4, `Junction Type D1`, 3,
 5, `Junction Type A2`, 5,
 6, `Junction Type B2`, 7,
 7, `Junction Type C2`, 6,
 8, `Junction Type D2`, 8

2. Set the list of available values for the parameter under the given circumstances.

if iLeftNeighbour = 1 then
 values "iJunctionType" 1, 3, 4, 6
else
 if iRightNeighbour = 1 then
 values "iJunctionType" 2, 5, 7, 8
 else
 values "iJunctionType" 1, 5, 7
 endif
endif

The resulting control is shown in the image below. (iLeftNeighbour = 0, iRightNeighbour = 1)

Miscellaneous

GDL Reference Guide 566

Transparent UI pictures
In ARCHICAD 10 a new method has been introduced that can handle alpha-layer based transparent pictures. The following controls handle
pictures with alpha layers correctly:
• ui_pict
• ui_infield{3}, method = 1 (thumbnail view control)
• ui_infield{3}, method = 2 (popup with icons and texts)
• ui_infield{3}, method = 3 (popup with icons only)
• ui_infield{3}, method = 4 (icon radio push button)
• ui_infield{4}, method = 1 (thumbnail view control)
• ui_infield{4}, method = 2 (popup with icons and texts)
• ui_infield{4}, method = 3 (popup with icons only)
• ui_infield{4}, method = 4 (icon radio push button)

Font sizes on the UI
If you use static texts (possibly in combination with the ui_style command), be aware of the following.

Miscellaneous

GDL Reference Guide 567

Because of the differences of the targeted operating systems, font sizes are not the same on Windows and on Mac. As a side effect, the extra
small font size is a bit larger than the small one on Windows. As a general rule, always test user interfaces on both platforms to check overlapping
and clipping.
Furthermore, special styles like Bold, Italic and Underline are not allowed in combination with extra small size. Outline and Shadow are old
Macintosh styles, which are no longer used.
The two pictures show the look of static texts with different sizes and styles.
On Windows:

On Mac:

Forward Migration script

Execution context
The FWM script is executed when a project saved in an earlier version of ARCHICAD is opened in a later version (starting with ARCHICAD
15) with the updated library. This new library can be loaded manually or by using the Consolidate option in the Library Manager. If a placed
instance of an object has a new, changed Main ID and a valid Forward Migration Script in the new library, it can be automatically substituted
by ARCHICAD. If the execution of the script is successful, the old element gets replaced by the new one.
This script enables the object to set the new parameters based on the old ones, without feature loss or a major change in appearance.

Miscellaneous

GDL Reference Guide 568

General recommendation
The first line of the script fills the FROM_GUID global variable (this contains the main ID of the original object to be migrated) into the
"actualGuid" variable. You may want to use the following structure to ensure maintainability.
The rest of the script is divided into subroutine calls, one for every change of GUID. Every block must have a corresponding line in the
Migration Table of the object and a block in the Backward Migration script. The latest change of Main ID always has to be the last call of this
script. In every block you set the ID to start from (_startID), and the one to end up with (_endID), define the migration logic in a subroutine
(for details and GDL commands, see the GDL Reference Guide), and at the end of the block you always set the new "_endID" (or set an empty
ID, which means that the upgrade process will stop at the previous block's version of the object) into the "actualGuid" variable. Example:

Miscellaneous

GDL Reference Guide 569

actualGUID = FROM_GUID

! ==
! Subroutines
! ==

 _startID = "AAAA-AAAA-...AAA"
 _endID = "BBBB-BBBB-...BBB"
gosub "migrationstepname_FWM"

! ==
! Set Migration GUID
! ==

setmigrationguid actualGUID

! ==
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
! ==

! ==
! migrationstepname
! ==
"migrationstepname_FWM":
 if actualGuid = _startID then
 newParameter = oldParameter
 parameters newParameter = newParameter
 actualGuid = _endID
 endif
return

Backward Migration script

Execution context
The BWM script is executed when a project is saved to the previous version of ARCHICAD. If the current version of the library part has a
different Main ID than its equivalent in the previous version, the migration script of the object is evaluated. As a result, the libpart will be either
downgraded if possible (sometimes with some minor compromise, if it does not affect the item's main functions), or will be lost completely

Miscellaneous

GDL Reference Guide 570

(in this case, it will appear as a "missing" dot sign in the earlier version project). The latter happens when a new function set introduced in the
current version represents a major change compared to the previous version.
A successful backward migration process should convert the object's parameters in a way that avoids major feature loss or changes in appearance.

General recommendation
The first line of the script sets the continuity control variable to valid. You may want to use the following structure to ensure maintainability.
The rest of the script is divided into subroutines: one change of Main ID is one subroutine. Every subroutine must have a corresponding line
in the Migration Table of the object and a corresponding subroutine in the Forward Migration script. The latest step back in changing Main
ID always has to be the first subroutine of this script.
At the start of each subroutine the target GUID is checked. If not empty, the script runs in called order. Backward migration only works for one
version back, so the targetGUID only needs to be set once (except when you make a fork in the migration to separate previous-version objects).
The end of the subroutine is about setting the destination (old) ID into the "targetGuid" variable. If you set an empty ID to the variable, the
downgrade process is canceled there. If the "targetGuid" matches the TO_GUID global variable (containing the main ID of the target element
in the conversion), the first part of the migration process is complete.
Adding a title or a short description of the migration step for every subroutine is highly recommended. You should use the same title for the
Forward Migration script pair of the subroutine.
After you have reached the desired stage of the object's devolution, you have to set the placed object's ID by using the setmigrationguid
In case the migration returns an empty ID, the element is going to be missing from the project opened in the previous version.

Miscellaneous

GDL Reference Guide 571

targetGUID = TO_GUID

! ==
! Subroutines
! ==

gosub "migrationstepname_BWM"

! ==
! Set Migration GUID
! ==

setmigrationguid targetGUID

! ==
end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! end ! en
! ==

! ==
! migrationstepname
! ==
"migrationstepname _BWM":
 if targetGUID # "" then
 bMigrationSuccess = 1
 if bMigrationSuccess = 1 then
 oldParameter = newParameter
 parameters oldParameter = oldParameter
 else
 targetGuid = ""
 endif
 endif
return

Migration table
Every time you change an object's Main ID, you need to fill in the old ID into the Migration Table of the element. Each line contains a previous
ID and an ARCHICAD version number (or 0, if you change more than once between two versions). During forward migration, the program
scans this list of ID-s, preselecting the elements available for the migration process. During backward migration, scanning this list the program

Miscellaneous

GDL Reference Guide 572

chooses only those with a version equivalent to the previous ARCHICAD version. Every line of this table must have at least one corresponding
subroutine in the Forward Migration script and the Backward Migration script.

Writing macros
Try to collect frequently used functionalities into macros. Calling a macro object from many objects can reduce library size and increase
soundness by reducing redundancy.
However avoid creating macros with small functional addition to the previous abstraction level. For example don't create a block_1x1x1 macro
for the generation of a 1m x 1m x 1m block. This increases the number of macro calls needlessly and it may worsen transparency.
Don't ever use .gdl as macros, use macro objects instead.
When you call a macro, always use the call keyword and put the name of the macro between quotation marks (e.g., call
"m_rail_wired"). Do not create macro calls where the macro name is a parameter to avoid missing macros from archive files. ARCHICAD
saves the default macro only into the archive file. (Workaround: call all parameter values as a macro after the end statement.)
Be careful at using the parameter buffer. Save the content of it at be beginning of the script if you want to use it. Be sure that only the defined
(return) values are in the buffer by the end of the script.

Macro return parameters
From ARCHICAD 10 on macros can return parameters to the caller object. At the caller's side, returned values can be collected using the
returned_parameters keyword followed by a variable list. The returned values will be stored in these variables in the order they are
returned in the called macro. The number and the type of the variables specified in the caller and those returned in the macro must not match. If
there are more variables specified in the caller, they will be set to 0 integer. Type compatibility is not checked: the type of the variables specified
in the caller will be set to the type of the returned values. If one of the variables in the caller is a dynamic array, all next values will be stored in it.
In the macro object the end and the exit commands define the values that have to be return to the caller object. See the example below.

Advanced parameters all
From ARCHICAD 10 on after parameters all keyword you can specify extra parameters to pass it to the macro. They will override the
values coming from the caller or parameters of the called macro left to be default. The macro can return parameters in this case also.

Faster macro call
Speed of parameter value transferring between the caller object and the macro was improved in ARCHICAD 10. Find out tips about utilization
of macro call's speed enhancements in the section called “Speed Issues”.

Miscellaneous

GDL Reference Guide 573

Macro call example
Script in the caller object.

call "myMacro" parameters all extraParam = 1
call "myMacro" parameters returned_parameters realWidth
call "myMacro" parameters all extraParam = 1 returned_parameters realWidth
call "myMacro" parameters all returned_parameters realWidth

Script in the macro.

realWidth = 2
end realWidth

Background Conversion Issues
Starting from ARCHICAD 19, all calculations necessary for opening 3D related views or viewpoints will be run as background processes.
Supported viewpoints:
• 3D Window
• Section
• Elevation
• Interior elevation (except when "Add bounded area" or "Detect and Fit to Zones" are enabled)
• 3D Document
If the background process is successful, the requested view takes only a few seconds to open. However, there may be some non thread-safe
library parts or objects placed in the planfile, which can disable background calculations:
• Zones
• Objects including text engine operations (except set style and define style commands)
• Objects using the following requests: "CUSTOM_AUTO_LABEL", "ZONE_COLUS_AREA", "MATCHING_PROPERTIES",

"ASSOCEL_PROPERTIES", "STYLE_INFO", "TEXTBLOCK_INFO", "FONTNAMES_LIST"
• Objects using variable named macros, requests, or non-thread safe macros. Project2 command or symbol fill definition are counted as non-

thread safe macro calls.
The relationship between GDL add-ons and background processing depends on the add-on itself.
Deterministic add-ons (not affecting background processing):

Miscellaneous

GDL Reference Guide 574

• Polygon Operations
• Property Add-on
• If used in read-only mode, and with files loaded in the active library: Text or Data I/O Add-ons, XML Add-on
Non-deterministic add-ons (disabling background processing):
• DateTime Add-on
• FileManager Add-on
• If not used in read-only mode, or not with files loaded in the active library: Text or Data I/O Add-ons, XML Add-on
The object scripts are examined statically, so the background conversion is disabled even if the obstacle function itself is not executed with
the current settings of the library part.
To check the loaded library parts' compatibility with background processing, use the "Check if Library Parts are Thread Safe" command of
the Library Developer menu.

Speed Issues
Try to avoid using the project2 command as it slows down plan regeneration.
Reduce the number of surfaces in your model to the minimum in order to make 3D regeneration faster. Use RESOL, TOLER and RADIUS
commands to control segmentation of curved surfaces.
Note that closed bodies regenerate faster in 3D than open ones (e.g., a cylinder is faster than an open tube).
When scripting the master script consider that the master script is run before each script type, so don't put script-type specific calculations here.
This is the place for common calculations needed by multiple scripts.
When scripting doors and windows avoid making unnecessary cuts (wallhole and wallniche).
Use integer values and operations whenever reasonable, these are much faster than floating point operations.
Try to minimize the usage of string operations.
In case of calling macros use the same parameter order after the call command as it is in the parameter list of the macro. call "myMacro"
parameters all is faster when the parameter orders of the macro and the caller object are similar. Try to avoid transferring string type
parameters in macro calls. Use numeric types where possible.

Windows-Macintosh compatibility
Though GDL objects and libraries are considered by GRAPHISOFT as platform independent, the following difficulties occur when objects
are manually moved from Windows to a Macintosh:
• Windows fonts will be replaced by the default Macintosh font in objects and list templates and vice-versa.

Miscellaneous

GDL Reference Guide 575

• Text type listing files (listset.txt, listkey.txt, list templates, etc.) could lose line breaks, therefore listing won't work (non-utf-8 coded texts,
usually)

Changing platform with binary libraries
To avoid the above problems, save a .pla archive file of your library on the first platform, then extract it on the second. This way the non-
utf-8 files will be converted correctly as well.

Images and HDPI support in GDL
Starting from ARCHICAD 21 real HDPI support is available for OS X devices. To provide this feature, scalable vector graphics (.svg) source
images are used to create multi-representation .tiff images, containing versions of the same graphic at different resolutions. ARCHICAD decides
at runtime which image resolution is the best for the current display device from the available set of 100%, 150%, and 200%. On Windows
platform 100% is the default resolution. However, images created from .svg files have a slightly different look on Windows plaform as well.
This option is only available via the LP_XMLConverter tool. The .svg source image files are automatically converted to .tiff images during
library conversion. A .gsm object cannot handle .svg images, so make sure the image name reference strings in scripts contain the .tiff extension
(or omit the extension).
Always test vector images in all resolutions (the .tiff images can be checked by any image editor, resolution-by-resolution) to avoid blurry images
after scaling (use lines aligned to full pixels in the source .svg as much as possible. Same recommendation as for .png images.)
The syntax requirements of any .svg built-in image (where the image is compiled into the binary library part itself) in GDLPict, Picture,
InfoPict .xml sections are the following:
• MIME attribute is "image/svg". In case the MIME-type and the source image extension is different, the conversion ends with a warning

(MIME is "image/svg", but the image file's extension is not svg)
• SectionFlags attribute is "1". This flag triggers the .tiff conversion. If the image is an .svg and the flag is different, a warning is displayed

during conversion (SectionFlags should be "1" in case of an svg image).
The rest of the image reference in GDLPict, Picture, InfoPict .xml sections have not changed. Make sure to get the extension of the source
image right in the path.
Non-built-in images, which are directly referred by their name in the object scripts are handled by the LP_XMLConverter tool as well:
• The .svg image should be part of the library source, but not in the _images folder.
• The conversion creates the .tiff counterparts of the .svg source images to the exact same location. The .svg source images are also copied to

the binary library to a separate folder (_svg_source name extension), to support the source.xml to .gsm to reverse.xml comparison workflow.
This extra folder can be avoided by the -excludesvg option of the LP_XMLConverter tool.

Any kind of .svg to .tiff conversion failure results in a warning or an error during library builds.

Miscellaneous

GDL Reference Guide 576

For tutorials and examples on the subject and the LP_XMLConverter tool, check out the GDL Center Tips and Tricks [https://gdl.graphisoft.com/
tips-and-tricks/how-to-use-the-lp_xmlconverter-tool] guides.

DOORS AND WINDOWS
This section discusses the various special options related to the creation of Door/Window library elements.

General Guidelines
Once a door/window is inserted into a wall, the default position of these library parts’ coordinate system is rotated so that the x-y plane is
vertical and the z axis points horizontally into the wall. The origin is placed on the bottom center of the wall opening, on the exterior side of
the wall. This way, doors/windows can be easily modeled by elements in the x-y plane. See the illustrations below.

x

y

z

Because of the special behavior of these library parts, the 2D symbol is generated from a special built-in projection otherwise not accessible by
users (an upside-down side view from a 90 degree direction). The symbol and the 3D shape are fitted to the Door/Window origin by the lower
(y) center (x) of the bounding box, but no adjustment is made along the z axis to enable users to design doors/windows extending beyond
the wall in either z direction.
Considering these rules, here are some hints that will help you construct doors/windows that will work properly:
• When constructing the door/window in the floor plan window, visualize it as if you are looking at it from the inside of the wall it will be

inserted into.
• Think of the project zero level as the external surface of the wall.
• Elements that should be inside the wall, like the window frame, should be above the zero level.
• Door panels opening to the outside should be below the zero level.

https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool
https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool
https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool

Miscellaneous

GDL Reference Guide 577

Positioning
A door is correctly defined if its insertion works as follows: clicking to the right of the insertion point means that the door leaf will open to the
same side on the right. A window is correctly defined if, upon insertion, the side that is clicked corresponds to the outer side.
An opening position can take one of 8 forms. These are represented by three global variables in GDL:
• mirroring to the Y-Z plane in 3D or to the Y axis in 2D (SYMB_MIRRORED)
• mirroring by the longitudinal axis of the wall (rotation by 180 degrees: SYMB_ROTANGLE)
• flipping (WIDO_REVEAL_SIDE)
Usually each part of the window should react in a different way to these conditions. The specification must be clear on deciding how the parts
of the object should, or should not act. E.g. a door leaf moves with these transformations, but the cavity closure does not. To keep the library
part consistent, several transformations should be used for these combinations. When changing the reveal side (flipping), the library part is
mirrored and dragged back by the value of the nominal frame thickness.
Illustration of the 8 states with a simplified door - the little circle flags the origin.

Miscellaneous

GDL Reference Guide 578

Global variables 1. Example drawing 1. Global variables 2. Example drawing 2.

WIDO_REVEAL_SIDE = 0
SYMB_MIRRORED = 0
SYMB_ROTANGLE = 0

WIDO_REVEAL_SIDE = 0
SYMB_MIRRORED = 1
SYMB_ROTANGLE = 0

WIDO_REVEAL_SIDE = 1
SYMB_MIRRORED = 0
SYMB_ROTANGLE = 180

WIDO_REVEAL_SIDE = 1
SYMB_MIRRORED = 1
SYMB_ROTANGLE = 180

WIDO_REVEAL_SIDE = 1
SYMB_MIRRORED = 0
SYMB_ROTANGLE = 0

WIDO_REVEAL_SIDE = 1
SYMB_MIRRORED = 1
SYMB_ROTANGLE = 0

WIDO_REVEAL_SIDE = 0
SYMB_MIRRORED = 0
SYMB_ROTANGLE = 180

WIDO_REVEAL_SIDE = 0
SYMB_MIRRORED = 1
SYMB_ROTANGLE = 180

Sample code undoing the automatic transformations done by ARCHICAD:

Miscellaneous

GDL Reference Guide 579

! 2D script
bRotated = round_int (SYMB_ROTANGLE) = 180
if bRotated then
 rot2 180
endif
if SYMB_MIRRORED then
 mul2 -1, 1
endif
if WIDO_REVEAL_SIDE exor bRotated then
 add2 0, WALL_THICKNESS
endif

! 3D script
bRotated = round_int (SYMB_ROTANGLE) = 180
if bRotated then
 roty 180
endif
if SYMB_MIRRORED then
 mulx -1
endif
if WIDO_REVEAL_SIDE exor bRotated then
 addz -WALL_THICKNESS
endif

Note that though flipping and mirroring is possible for all doors and windows, it is incorrect in manufacturer libraries where a library part
models a real window - which, of course, cannot be turned inside out. In this case the script should undo the mirroring done by ARCHICAD.

Creation of Door/Window Library Parts
When creating Door/Window type library parts, several possibilities exist, presenting different problems:
• Creation of rectangular doors/windows in straight walls
• 3D related challenges

• Creation of non-rectangular doors/windows in straight walls
• Creation of rectangular doors/windows in curved walls
• Creation of non-rectangular doors/windows in curved walls

• 2D related challenges
• Cutting custom wall opening

Miscellaneous

GDL Reference Guide 580

• WALLHOLE2
• Extending the wall polygon
• WALLBLOCK2
• WALLLINE2
• WALLARC2

Rectangular Doors/Windows in Straight Walls
This is the easiest and most straightforward way of creating doors and windows. The use of simple GDL commands such as PRISM_ or RECT
is recommended.
If you want to match the surface materials of door/window elements to those of the wall, the bottom surface of the elements should match
the outside, and the top surface the inside of the wall. You can achieve this from your scripts using the WALL_MAT_A, WALL_MAT_B and
WALL_MAT_EDGE global variables representing the surface materials of the wall into which the door/window is placed. In the 2D script,
the WALL_SECT_PEN, WALL_FILL_PEN and WALL_FILL global variables can be useful, as these give you the pen numbers of the wall
contour and fill plus the index number of the fill of the wall on the floor plan into which the door/window is placed. With composite walls,
you have to use the corresponding global variables.
See Miscellaneous for details.
The object libraries come with a large set of door/window macros. These GDL scripts contain common building elements which are used by
many doors/windows in the library. There are macros for generating commonly-used frames, panels and many other types of door/window
parts. Open some door/window library parts to see what kind of macros they call and what type of parts those macros generate.

Example:

X

Y

Z

Miscellaneous

GDL Reference Guide 581

a=0.9: b=1.5: c=0.1: d=0.08
e=0.08: f=0.9: g=0.03: h=3
PRISM_ 10, c,
 -a/2, 0, 15, a/2, 0, 15,
 a/2, b, 15, -a/2, b, 15,
 -a/2, 0, -1,
 -a/2+d, d, 15, a/2-d, d, 15,
 a/2-d, b-d, 15, -a/2+d, b-d, 15,
 -a/2+d, d, -1
ADD -a/2+d, f, 0
BRICK a-2*d, e, c
ADD -g/2, -f+d, c/2
GOSUB 1
ADDZ -g
GOSUB 1
DEL 2
MATERIAL "Glass - Blue"
ADD 0, -f+d, c/2
RECT a-2*d, f-d
ADDY f-d+e
RECT a-2*d, b-f-e-d
END

1:
 FOR i=1 TO h-1
 ADDX (a-2*d)/3
 BLOCK g, f-d, g
 ADDY f+e-d
 BLOCK g, b-f-d-e, g
 DEL 1
 NEXT i
 DEL h-1
 RETURN

Miscellaneous

GDL Reference Guide 582

3D Related Challenges

Non-Rectangular Doors/Windows in Straight Walls
When working with doors/windows, it is important to know that placing a door/window always cuts a rectangular hole into the wall. The size
of this hole is determined by the A and B parameters of the door/window library part. However, when the door/window is not rectangular in
elevation, it does not entirely fill the cut rectangular hole. The solution to this is to use the WALLHOLE or WALLNICHE command to define
a polygon shape to be cut into the wall where the door/window is placed. There are two solutions for this:
• The 3D script has to contain parts that generate those parts of the wall that fill the hole between the door/window body and the edges of

the rectangular wall cut. In this case, special attention must be paid to the visibility of the edges of these fillings.

X

Y

Z

• With the WALLHOLE or WALLNICHE command, you can define a polygon shape to be cut into the wall where the door/window is placed.

WALLHOLE
WALLHOLE n, status,
 x1, y1, mask1,
 ...
 xn, yn, maskn
 [, x, y, z]
n: the number of polygon nodes.
status:
1: use the attributes of the body for the generated polygons and edges,
2: generated cut polygons will be treated as normal polygons.

xi, yi: cross-section polygon coordinates.

Miscellaneous

GDL Reference Guide 583

maski: similar to the CUTPOLYA command:
maski = j1 + 2*j2 + 4*j3 + 64*j7, where each j can be 0 or 1.

x, y, z: optional direction vector (default is door/window Z axis).

x

z

y

1

n

i

i+1
j1

j2

j3Z

Y

X

This command can be used in doors’/windows’ 3D script to cut custom hole(s) in the wall they are placed into. During the 3D generation of
the current wall, the 3D script of all its doors/windows is interpreted without model generation to collect the WALLHOLE commands. If they
exist, the current wall will be cut using an infinite tube with the polygonal cross-section and direction defined in the script. There can be any
number of WALLHOLEs for any door/window, so it is possible to cut more holes for the same door/window, even intersecting ones. If at
least one WALLHOLE command is interpreted in a door/window 3D script, no rectangular opening will be generated for that door/window.

Note: The 3D reveal will not be generated automatically for custom holes, you have to generate it from the script. The hole customized this
way will only be visible in 3D, because WALLHOLE commands do not have any effect in 2D. A 2D representation can be scripted if needed
(used with framing in plan off).

The use of convex polygonal cross-sections is recommended; using concave polygons may result in strange shadings/renderings or cut errors.
Convex polygons can be combined to obtain concave ones. Mirroring transformations affect the cutting direction in an unexpected way - to
get a more straightforward result, use the WALLNICHE command.

Miscellaneous

GDL Reference Guide 584

Example 1:

RESOL 72
l1 = 2.7: l2=1.2
h1=2.1: h2=0.3: h3=0.9
r = ((l1/2)^2+h2^2)/(2*h2)
a = ATN((l1/2)/(r-h2))
WALLHOLE 5, 1,
 -l1/2, h3, 15,
 l1/2, h3, 15,
 l1/2, h1-h2, 13,
 0, h1-r, 915,
 0, 2*a, 4015
WALLHOLE 4, 1,
 l1/2-l2, 0, 15,
 l1/2, 0, 15,
 l1/2, h3, 15,
 l1/2-l2, h3, 15

Miscellaneous

GDL Reference Guide 585

Example 2:

WALLHOLE 5, 1,
 -0.45, 0, 15,
 0.45, 0, 15,
 0.45, 1.5, 15,
 0, 1.95, 15,
 -0.45, 1.5, 15
PRISM_ 12, 0.1,
 -0.45, 0, 15,
 0.45, 0, 15,
 0.45, 1.5, 15,
 0, 1.95, 15,
 -0.45, 1.5, 15,
 -0.45, 0, -1,
 -0.35, 0.1, 15,
 0.35, 0.1, 15,
 0.35, 1.45, 15,
 0, 1.80, 15,
 -0.35, 1.44, 15,
 -0.35, 0.1, -1

WALLNICHE
WALLNICHE n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1, [mat1,]
 ...
 xn, yn, maskn[, matn]
Similar to the CUTFORM command.
method: Controls the form of the cutting body:
1: prism shaped,
2: pyramidal,
3: wedge-shaped cutting body. The direction of the wedge’s top edge is parallel to the Y axis and its position is in rx, ry, rz (ry is ignored).

status: Controls the extent of the cutting body and the treatment of the generated cut polygons and new edges.
status = j1 + 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8 + 256*j9, where each j can be 0 or 1.

Miscellaneous

GDL Reference Guide 586

j1: use the attributes of the body for the generated polygons and edges,
j2: generated cut polygons will be treated as normal polygons,
j4: define the limit of the cut (with j4),
j5: define the limit of the cut (with j5),
j6: generate a boolean intersection with the cutting body rather than a boolean difference. (can only be used with the CUTFORM
command),
j7: edges generated by the bottom of the cutting body will be invisible,
j8: edges generated by the top of the cutting body will be invisible.
j9: cutting shape has custom side materials (mati).
j4 = 0 and j5 = 0: finite cut,
j4 = 0 and j5 = 1: semi-infinite cut,
j4 = 1 and j5 = 1: infinite cut,

rx,ry,rz: defines the direction of cutting if the cutting form is prism-shaped, or the top of the pyramid if the method of cutting is
pyramidal.

d: defines the distance along rx,ry,rz to the end of the cut. If the cut is infinite, this parameter has no effect. If the cut is finite, then the start
of the cutting body will be at the local coordinate system and the body will end at a distance of d along the direction defined by rx,ry,rz.
If the cut is semi-infinite, then the start of the cutting body will be at a distance of d along the direction defined by rx,ry,rz and the direction
of the semi-infinite cut will be in the opposite direction defined by rx,ry,rz.

mati: side material of the cutting shape (when status j9 = 1)
mask: Defines the visibility of the edges of the cutting body.
j1: the polygon will create a visible edge upon entry into the body being cut,
j2: the lengthwise edge of the cutting form will be visible,
j3: the polygon will create a visible edge upon exiting the body being cut,
j4: the bottom edge of the cutting form will be visible,
j5: the top edge of the cutting form will be visible,
j7: controls the viewpoint dependent visibility of the lengthwise edge.

Rectangular Doors/Windows in Curved Walls
When placing doors/windows into curved walls, the sides of the hole cut into the wall can vary according to the picture below.

Miscellaneous

GDL Reference Guide 587

The hole in the wall on the left is created when the program automatically cuts the hole for the door/window. In this case the sides will be of
radial direction. On the right, the hole is cut using the WALLHOLE command in the 3D Script of the door/window object. The object itself
needs to be written by taking these factors into consideration.
Another thing to consider is whether the door/window placed into the curved wall is a straight or a curved one.

In the case of a straight door/window, as on the left above, the thickness and width of the object and the thickness of the wall are closely related,
since above a certain dimension the object would fall outside of the wall. When using true curved doors/windows, this problem doesn’t occur.

Example: Window with a frame following the curve of the wall

Y

X

Z

Miscellaneous

GDL Reference Guide 588

RESOL 72
ROTX -90 : MULY -1
C= 0.12 : Z=360*A/(2*WIDO_ORIG_DIST*PI)
Y= 360*C/(2*WIDO_ORIG_DIST*PI) : A1= 270+Z/2 : A2=270-Z/2
GOSUB "curved_horizontal_frame"
ADDZ B
MULZ -1
GOSUB "curved_horizontal_frame"
DEL 2
ADDZ C
GOSUB "vertical_frame"
MULX -1
GOSUB "vertical_frame"
END
"curved_horizontal_frame":
 PRISM_ 9, C,
 cos(A2)*R_, SIN(A2)*R_+R_, 11,
 cos(A2+Y)*R_, sin(A2+Y)*R_+R_, 13,
 0, R_, 900,
 0, Z-2*Y, 4009,
 cos(A1)*R_, sin(A1)*R_+R_, 11,
 cos(A1)*(R_-0.1), sin(A1)*(R_-0.1)+R_, 11,
 cos(A1-Y)*(R_-0.1), sin(A1-Y)*(R_-0.1)+R_, 13,
 0, -(Z-2*Y), 4009,
 cos(A2)*(R_-0.1), sin(A2)*(R_-0.1)+R_, 11
 RETURN
"vertical_frame":
 PRISM_ 4, B-2*C,
 cos(A2)*R_, sin(A2)*R_+R_, 10,
 cos(A2+Y)*R_, sin(A2+Y)*R_+R_, 15,
 cos(A2+Y)*(R_-0.1), sin(A2+Y)*(R_-0.1)+R_, 10,
 cos(A2)*(R_-0.1), sin(A2)*(R_-0.1)+R_, 10
 RETURN

Non-Rectangular Doors/Windows in Curved Walls
The general guidelines given for rectangular doors/windows in curved walls applies here, too.

Miscellaneous

GDL Reference Guide 589

Example:

Miscellaneous

GDL Reference Guide 590

wFrame=0.1: wDivider=0.025
Z=A/2-SQR(2)*wFrame: Y=A/2-SQR(2)*wFrame-wDivider
ADDY A/2
WALLHOLE 4, 1,
 0, -A/2, 15,
 A/2, 0, 15,
 0, A/2, 15,
 -A/2, 0, 15
PRISM_ 10, 0.1,
 0, -A/2, 15,
 A/2, 0, 15,
 0, A/2, 15,
 -A/2, 0, 15,
 0, -A/2, -1,
 0, -Z, 15,
 Z, 0, 15,
 0, Z, 15,
 -Z, 0, 15,
 0, - Z, -1
ADDZ 0.02
GOSUB "cross_divider"
ADDZ 0.03
GOSUB "cross_divider"
ADDY -Z
SET MATERIAL "Glass - Blue"
ROTZ 45
RECT SQR(2)*Z, SQR(2)*Z
END

Miscellaneous

GDL Reference Guide 591

"cross_divider":
 PRISM_ 16, 0.03,
 0, -Z, 15,
 wDivider, -Y, 15,
 wDivider, -wDivider, 15,
 Y, -wDivider, 15,
 Z, 0, 15,
 Z, wDivider, 15,
 wDivider, wDivider, 15,
 wDivider, Y, 15,
 0, Z, 15,
 -wDivider, Y, 15,
 -wDivider, wDivider, 15,
 -Y, wDivider, 15,
 -Z, 0, 15,
 -Y, -wDivider, 15,
 -wDivider, -wDivider, 15,
 -wDivider, -Y, 15
 RETURN

2D Related Challenges

Cutting custom wall opening
Placing a door/window cuts a rectangular hole into the wall by default. The size of this hole in 2D is determined by the A parameters of the
door/window library part. Implementing custom reveals or cavity closures requires cutting custom shaped holes in the wall or extending it
a bit in the floor plan view.
A correct solution for this issue can be achieved by using the WALLHOLE2, WALLBLOCK2, WALLLINE2 and WALLARC2 commands.

WALLHOLE2
WALLHOLE2 n, fill_control, fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1,
 ...
 xn, yn, sn
Wall opening definition for the plan view coupled with a cover polygon. Only the cut part of the wall is affected, view wall polygons stay intact.
The cover polygon has no contour.

Miscellaneous

GDL Reference Guide 592

This command can be used in the 2D script of door/window objects only.
The parameterization of the command is mainly the same as the one of the POLY2_B{2} command.
fill_control:
fill_control = 2*j2 + 8*j4 + 16*j5 + 32*j6 + 64*j7, where each j can be 0 or 1.
j2: draw cover fill on the polygon,
j4: local fill orientation,
j5: local fill should align with the wall direction (fill origin is at the wall origin and directions are matching),
j6: fill is cut fill (default is drafting fill),
j7: fill is cover fill (only if j6 = 0, default is drafting fill).

WALLHOLE2{2}
WALLHOLE2{2} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 innerRadius,
 x1, y1, s1,
 ...
 xn, yn, sn
Advanced version of WALLHOLE2, where fill distortion can be controlled in an enhanced way.
It is equivalent to the POLY2_B{5} command in the geometric definition.
distortion_flags:
distortion_flags = j1 + 2*j2 + 4*j3 + 8*j4 + 16*j5 + 32*j6 + 64*j7 + 128*j8, where each j can be 0 or 1.
The valid value for distortion_flags is between 0 and 255. Don’t use value out of this range.
j1-j7: similar to the POLY2_B{5} command,
j8: local fill should align with the wall direction (fill origin is at the wall origin and directions are matching), meaningful only when j4 is
set. Distortion matrix (mij parameters) are omitted.

Miscellaneous

GDL Reference Guide 593

Extending the wall polygon

WALLBLOCK2
WALLBLOCK2 n, fill_control, fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1,
 ...
 xn, yn, sn

WALLBLOCK2{2}
WALLBLOCK2{2} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 innerRadius,
 x1, y1, s1,
 ...
 xn, yn, sn
Wall polygon (extension) definition for the plan view. Both the cut and view wall polygons are cut by the defined polygon. Wall openings
defined via WALLHOLE2 in another window/door object cut the polygon generated by this command, while wallholes coming from the
same object don’t.
This command can be used in the 2D script of door/window objects only.
The parameterization of the command is exactly the same as the ones of WALLHOLE2.

WALLLINE2
WALLLINE2 x1, y1, x2, y2
Wall line (extension) definition between two points for the plan view. Wall openings defined via WALLHOLE2 in another window/door object
cut the line generated by this command, while wallholes coming from the same object don’t.
This command can be used in the 2D script of door/window objects only.
The parameterization of the command is exactly the same as the one of the LINE2 command.

WALLARC2
WALLARC2 x, y, r, alpha, beta
An arc with its centerpoint at (x, y) from the angle alpha to beta, with a radius of r, which is drawn by the containing wall. Wall openings defined
via WALLHOLE2 in another window/door object cut the arc generated by this command, while wallholes coming from the same object don’t.

Miscellaneous

GDL Reference Guide 594

This command can be used in the 2D script of door/window objects only.
The parameterization of the command is exactly the same as the one of the ARC2 command.

GDL CREATED FROM THE FLOOR PLAN
Saving the floor plan as a GDL script or library part will result GDL elements. You can use these GDL scripts as templates for your custom
library parts.

KEYWORDS

Common Keywords
FILE_DEPENDENCE
MOD
AND
OR
EXOR
FOR
TO
STEP
NEXT
DO (at DO - WHILE, at WHILE - ENDWHILE)
WHILE (at DO - WHILE, at WHILE - ENDWHILE)
ENDWHILE
REPEAT
UNTIL
IF (at IF - GOTO, at IF - THEN - ELSE - ENDIF)
THEN (at IF - GOTO, at IF - THEN - ELSE - ENDIF)
GOTO (at IF - GOTO, at GOTO)
GOSUB (at IF - GOTO, at GOSUB)
ELSE
ENDIF
RETURN

Miscellaneous

GDL Reference Guide 595

END
EXIT
BREAKPOINT

FILLTYPES_MASK (at DEFINE FILL, at DEFINE FILLA, at DEFINE SYMBOL_FILL, at DEFINE
SOLID_FILL, at DEFINE EMPTY_FILL, at DEFINE LINEAR_GRADIENT_FILL, at DEFINE
RADIAL_GRADIENT_FILL, at DEFINE TRANSLUCENT_FILL, at DEFINE IMAGE_FILL, at VALUES)
PROFILETYPES_MASK
DICT
DIM
PUT
GET
USE
NSP
CALL
RETURNED_PARAMETERS
DEFAULT
PRINT

HASKEY
REMOVEKEY
VARDIM1
VARDIM2
PARVALUE_DESCRIPTION
ABS
CEIL
INT
FRA
ROUND_INT
SGN
SQR
ACS
ASN

Miscellaneous

GDL Reference Guide 596

ATN
COS
SIN
TAN
PI
EXP
LGT
LOG
NOT
MIN
MAX
RND
BITTEST
BITSET
REQ
REQUEST
IND
APPLICATION_QUERY
LIBRARYGLOBAL
STR
STR{2}
SPLIT
STW
STRLEN
STRSTR
STRSUB
STRTOUPPER
STRTOLOWER
OPEN
INPUT
VARTYPE
OUTPUT
CLOSE

Miscellaneous

GDL Reference Guide 597

INITADDONSCOPE
PREPAREFUNCTION
CALLFUNCTION
CLOSEADDONSCOPE

Reserved Keywords
The keywords listed below are reserved; they exist for compatibility reasons or are not publicized.
 BAS
 BOX
 CONT
 FILTER
 GDLBIN
 HIP_ROOFS
 LIN
 LINE
 MIGRATIONWARNING
 NOD
 NODE
 ORIGO
 PARS
 PAUSE
 PLOTMAKER
 PLOTTER
 RECT_
 REF
 SFLINE
 TET
 TETRA
 TRI
 WALL_
 VOCA
 UI_OK
 UI_CANCEL

3D Use Only
ADDX

Miscellaneous

GDL Reference Guide 598

ADDY
ADDZ
ADD
MULX
MULY
MULZ
MUL
ROTX
ROTY
ROTZ
ROT
XFORM

BLOCK
BRICK
CYLIND
SPHERE
ELLIPS
CONE
PRISM
PRISM_
CPRISM_
CPRISM_{2}
CPRISM_{3}
CPRISM_{4}
BPRISM_
FPRISM_
HPRISM_
SPRISM_
SPRISM_{2}
SPRISM_{3}
SPRISM_{4}
SLAB

Miscellaneous

GDL Reference Guide 599

SLAB_
CSLAB_
CWALL_
BWALL_
XWALL_
XWALL_{2}
XWALL_{3}
BEAM
CROOF_
CROOF_{2}
CROOF_{3}
CROOF_{4}
MESH
ARMC
ARME
ELBOW
EXTRUDE
PYRAMID
REVOLVE
REVOLVE{2}
REVOLVE{3}
REVOLVE{4}
REVOLVE{5}
RULED
RULED{2}
RULEDSEGMENTED
RULEDSEGMENTED{2}
SWEEP
TUBE
TUBE{2}
TUBEA
COONS
COONS{2}

Miscellaneous

GDL Reference Guide 600

MASS
MASS{2}
POLYROOF
POLYROOF{2}
POLYROOF{3}
POLYROOF{4}
EXTRUDEDSHELL
EXTRUDEDSHELL{2}
EXTRUDEDSHELL{3}
REVOLVEDSHELL
REVOLVEDSHELL{2}
REVOLVEDSHELL{3}
REVOLVEDSHELLANGULAR
REVOLVEDSHELLANGULAR{2}
REVOLVEDSHELLANGULAR{3}
RULEDSHELL
RULEDSHELL{2}
RULEDSHELL{3}
TEXT
BODY
BASE
NURBSCURVE2D
NURBSCURVE3D
NURBSSURFACE
NURBSVERT
NURBSEDGE
NURBSTRIM
NURBSTRIMSINGULAR
NURBSFACE
NURBSFACE{2}
NURBSLUMP
NURBSBODY
POINTCLOUD

Miscellaneous

GDL Reference Guide 601

CUTPLANE
CUTEND (at CUTPLANE, at CUTPLANE{2}, at CUTPLANE{3}, at CUTPOLY, at CUTPOLYA, at CUTSHAPE)
CUTPLANE{2}
CUTPLANE{3}
CUTPOLY
CUTPOLYA
CUTSHAPE
CUTFORM
CUTFORM{2}
GROUP
ENDGROUP
ADDGROUP
ADDGROUP{2}
ADDGROUP{3}
SUBGROUP
SUBGROUP{2}
SUBGROUP{3}
ISECTGROUP
ISECTGROUP{2}
ISECTGROUP{3}
ISECTLINES
PLACEGROUP
KILLGROUP
SWEEPGROUP
SWEEPGROUP{2}
SWEEPGROUP{3}
SWEEPGROUP{4}
SWEEPGROUP{5}
CREATEGROUPWITHMATERIAL
BINARY
WALLNICHE

HOTSPOT

Miscellaneous

GDL Reference Guide 602

HOTLINE
HOTARC
LIN_
RECT
POLY
POLY_
PLANE
PLANE_
CIRCLE
ARC
LIGHT
PICTURE
RICHTEXT
VERT (at VERT, at VERT{2})
TEVE
VECT
EDGE
PGON
PGON{2}
PGON{3}
PIPG
COOR
COOR{2}
COOR{3}
MODEL
WIRE
SURFACE
SOLID
MATERIAL (at [SET] MATERIAL, at IND)
BUILDING_MATERIAL (at [SET] BUILDING_MATERIAL, at IND)
SECT_FILL
SECT_ATTRS
SECT_ATTRS{2}

Miscellaneous

GDL Reference Guide 603

SHADOW
ON
OFF
AUTO
DEFINE MATERIAL (at DEFINE MATERIAL, at DEFINE MATERIAL BASED_ON)
BASED_ON
DEFINE TEXTURE
TEXTURE
WALLHOLE

2D Use Only
ADD2
MUL2
ROT2

LINE2
RECT2
POLY2
POLY2_
POLY2_A
POLY2_B
POLY2_B{2}
POLY2_B{3}
POLY2_B{4}
POLY2_B{5}
POLY2_B{6}
ARC2
CIRCLE2
SPLINE2
SPLINE2A
TEXT2
RICHTEXT2
FRAGMENT2

Miscellaneous

GDL Reference Guide 604

PROJECT2
PROJECT2{2}
PROJECT2{3}
PROJECT2{4}
DRAWING2
DRAWING3
DRAWING3{2}
DRAWING3{3}
WALLHOLE2
WALLHOLE2{2}
WALLBLOCK2
WALLBLOCK2{2}
WALLLINE2
WALLARC2

HOTSPOT2
HOTLINE2
HOTARC2
PICTURE2
PICTURE2{2}
LINE_PROPERTY
DRAWINDEX
FILL (at [SET] FILL, at IND)
LINE_TYPE (at [SET] LINE_TYPE, at IND)
DEFINE FILL
DEFINE FILLA
DEFINE SYMBOL_FILL
DEFINE SOLID_FILL
DEFINE EMPTY_FILL
DEFINE LINEAR_GRADIENT_FILL
DEFINE RADIAL_GRADIENT_FILL
DEFINE TRANSLUCENT_FILL
DEFINE IMAGE_FILL

Miscellaneous

GDL Reference Guide 605

DEFINE LINE_TYPE
DEFINE SYMBOL_LINE

2D and 3D Use
DEL (at DEL, at DEL TOP)
TOP
NTR
ADDITIONAL_DATA (at LIGHT, at DEFINE MATERIAL BASED_ON)
LET
RADIUS
RESOL
TOLER
PEN
SET (at [SET] STYLE, at [SET] MATERIAL, at [SET] BUILDING_MATERIAL, at [SET] FILL, at [SET]
LINE_TYPE)
STYLE (at [SET] STYLE, at IND)
DEFINE STYLE
DEFINE STYLE{2}
PARAGRAPH
ENDPARAGRAPH
TEXTBLOCK
TEXTBLOCK_
PROFILE_ATTR

Non-Geometric Scripts

Properties Script
DATABASE_SET
DESCRIPTOR
REF DESCRIPTOR
COMPONENT
REF COMPONENT

Miscellaneous

GDL Reference Guide 606

BINARYPROP
SURFACE3D
VOLUME3D
POSITION
WALLS
COLUMNS
BEAMS
DOORS
WINDOWS
OBJECTS
CEILS
PITCHED_ROOFS
LIGHTS
HATCHES
ROOMS
MESHES
DRAWING

Parameter Script
VALUES
CUSTOM (at VALUES, at UI_INFIELD{4})
RANGE
VALUES{2}
PARAMETERS (at PARAMETERS, at CALL)
LOCK
ALL (at LOCK, at HIDEPARAMETER, at CALL)
HIDEPARAMETER

Interface Script
UI_DIALOG
UI_PAGE
UI_CURRENT_PAGE
UI_BUTTON (at UI_BUTTON, at UI_TOOLTIP)

Miscellaneous

GDL Reference Guide 607

UI_PREV
UI_NEXT
UI_FUNCTION
UI_LINK
UI_PICT_BUTTON (at UI_PICT_BUTTON, at UI_TOOLTIP)
UI_SEPARATOR
UI_GROUPBOX
UI_PICT (at UI_PICT, at UI_TOOLTIP)
UI_STYLE
UI_OUTFIELD (at UI_OUTFIELD, at UI_TOOLTIP)
UI_INFIELD (at UI_INFIELD, at UI_TOOLTIP)
UI_INFIELD{2} (at UI_INFIELD{2}, at UI_TOOLTIP)
UI_INFIELD{3} (at UI_INFIELD{3}, at UI_TOOLTIP)
UI_INFIELD{4} (at UI_INFIELD{4}, at UI_TOOLTIP)
UI_CUSTOM_POPUP_INFIELD (at UI_CUSTOM_POPUP_INFIELD, at UI_TOOLTIP)
UI_CUSTOM_POPUP_INFIELD{2} (at UI_CUSTOM_POPUP_INFIELD{2}, at UI_TOOLTIP)
UI_RADIOBUTTON (at UI_RADIOBUTTON, at UI_TOOLTIP)
UI_RADIOBUTTON{2}
UI_PICT_RADIOBUTTON
UI_PICT_RADIOBUTTON{2}
UI_PICT_PUSHCHECKBUTTON
UI_PICT_PUSHCHECKBUTTON{2}
UI_TEXTSTYLE_INFIELD
UI_TEXTSTYLE_INFIELD{2}
UI_LISTFIELD (at UI_LISTFIELD, at UI_TOOLTIP)
UI_LISTITEM (at UI_LISTITEM, at UI_TOOLTIP)
UI_LISTITEM{2} (at UI_LISTITEM{2}, at UI_TOOLTIP)
UI_CUSTOM_POPUP_LISTITEM (at UI_CUSTOM_POPUP_LISTITEM, at UI_TOOLTIP)
UI_CUSTOM_POPUP_LISTITEM{2} (at UI_CUSTOM_POPUP_LISTITEM{2}, at UI_TOOLTIP)
UI_TOOLTIP
UI_COLORPICKER
UI_COLORPICKER{2}
UI_SLIDER

Miscellaneous

GDL Reference Guide 608

UI_SLIDER{2}

Forward and Backward Migration Scripts
SETMIGRATIONGUID
STORED_PAR_VALUE
DELETED_PAR_VALUE
NEWPARAMETER

GDL DATA I/O ADD-ON
The GDL Data In/Out Add-On allows you to access a simple kind of database by using GDL commands. Otherwise this Add-On is similar
to the GDL Text In/Out Add-On.

Description of Database
The database is a text file in which the records are stored in separate lines. The database can be queried and modified based on a single key.
The key and the other items are separated by a character (specified in the OPEN command).
The length of the lines does not need to be the same and even the number of columns in the records may be different.
If a database is open for writing then there should be enough space beside the database file for duplicating the whole file.
Opening and closing a database may be time consuming, so consecutive closing and opening of a database should be avoided.
Large databases (with more than some hundred thousand records) should be ordered by the key values.
A database can be opened, queried, modified and closed by this Add-On using the OPEN, INPUT, OUTPUT and CLOSE GDL commands.

Opening a Database
channel = OPEN (filter, filename, paramstring)
Opens the database. If the database file is to be opened for modification and the file does not exist, it creates a new file. If the database file is
to be opened for reading and the file does not exist, an error message is displayed.
Its return value is a positive integer that will identify the specific database. This value will be the database’s future reference number.
If the database is opened before open command, it will generate a channel number only.
filter: the internal name of the Add-On, in this case "DATA"
filename: the name of the database file to be opened
paramstring: add-on specific parameter, contains separator characters and file opening mode parameters

Miscellaneous

GDL Reference Guide 609

The paramstring may contain the following:
SEPARATOR: after the keyword between single quotation marks ('') you can define a character that you want to use in your text file (both
in case of writing and reading) for the separation of data fields. A special case is the tabulator character ('\t').
MODE: after the keyword the mode of opening has to follow. There are three modes of opening:
• RO (read only)
• WA (read, append/modify)
• WO (overwrite) Empties the database if exists.
DIALOG: the 'filename' parameter is working as a file-identifier, otherwise it is a full-path-name. The file-identifier is a simple string, which
will be matched to an existing file by the Add-On during a standard 'Open/Save as' dialog. This matching is stored by the Add-On and it
won't ask again except when the file is not available any more. If the open mode is read only, the Add-On will put up an Open dialog to
select an existing document. Otherwise the Add-On put up an alert-dialog to select between the 'Create' and 'Browse' options:
• Create: create a new data-file (Save as Dialog).
• Browse: search an existing data-file (Open dialog)
LIBRARY: If the LIBRARY keyword is present in the parameter string, the data file has to be in the loaded library. Opening data file from
the loaded library for reading is possible from all scripts, but writing is only enabled in the parameter, user interface and property scripts.
Always put a comma (,) between the components of paramstring.
If you use keywords that don’t exist, if the separator characters given are wrong or if there is nothing in the parameter string, the extension
will use the default settings: "SEPARATOR = '\t', MODE = RO"

Example:
ch1 = OPEN ("DATA", "file1",
 "SEPARATOR=';', MODE = RO, DIALOG")
ch2 = OPEN ("DATA", "file2", "")
ch3 = OPEN ("DATA", "newfile",
 "SEPARATOR = '\t', MODE = WA")

Reading Values from Database
INPUT (channel, recordID, fieldID, var1 [, var2, ...])
Queries the database based on the key value.
If it finds the record, it reads items from the record starting from the given column and puts the read values into the parameters in sequence.
In the parameter list there has to be at least one value. The values can be of numeric or string type independently of the parameter type defined
for them. The return value is the number of successfully read values.

Miscellaneous

GDL Reference Guide 610

If there are more parameters than values, the parameters without corresponding values will be set to zero. In case of empty columns (i.e. if
there is nothing between the separator characters) the parameters will be set to zero.
If it finds no record it returns (-1).
channel: channel value, used to identify the connection.
recordID: key value (numeric or string).
fieldID: the column number in the given record (the smallest number, 1 refers to the item after the key value).
vari: variables to receive the read record items.

Example:
! input of three values from the first column of the first row
nr = INPUT (ch1, "key1", 1, v1, v2, v3)

PRINT nr, v1, v2, v3

Writing Values into Database
OUTPUT channel, recordID, fieldID, expr1 [, expr2, ...]
In case of record creation or modification, it sets the record belonging to the given key value. The record will contain the given values in the
same sequence as they appear in the command. The values can be of numeric or string type. There has to be at least one expression.
In case of deletion the record belonging to the given key value is removed from the database. The expression values are ignored, however at
least one should be specified.
Modifying data files loaded with the library is only enabled in the parameter, user interface and property scripts.
recordID: key value (numeric or string)
fieldID: flag: specify 0 (or <= 0) to delete a record, specify 1 (or > 0) to create or modify a record
expri: new item values of the found or new record. In case of deletion these values are ignored

Example:
string = "Date: 19.01.1996"
a = 1.5
OUTPUT ch2, "keyA", 1, "New record"
OUTPUT ch2, "keyA", 1, "Modified record"
OUTPUT ch2, "keyA", 0, 0 ! deletes the record
OUTPUT ch2, "keyB", 1, a, string

Miscellaneous

GDL Reference Guide 611

Closing Database
CLOSE channel
channel: channel value
Closes the database identified by the channel value.

GDL DATETIME ADD-ON
The DateTime extension allows you to set various formats for the current date and time set on your computer.
The Add-On works the same way the GDL file operations. You have to open a channel, read the information and close the channel.
This Add-On is also available by using the REQUEST GDL command, in which case the sequence of commands OPEN, INPUT and CLOSE
is called internally. This is the simplest way to obtain the date/time information, with just a single GDL command line:
REQUEST ("DateTime", format_string, datetimestring)
The second parameter of the Request function is the same as that described in the OPEN function paramstring parameter.

Opening Channel
channel = OPEN (filter, filename, paramstring)
Its return value is a positive integer that will identify the opened channel. This value will become the channel’s future reference number. The
paramstring can contain specifiers and other characters.
filter: the internal name of the Add-On, in this case "DateTime"
filename: unused (there is no need to open any file to get the system date and time)
paramstring: add-on specific parameter, contains the desired output format of the date and time
The specifiers are replaced with date and time values as follows:

Miscellaneous

GDL Reference Guide 612

%y year without century, as a decimal number (00-99)

%Y year with century, as a decimal number

%b abbreviated month name

%B full month name

%m month, as a decimal number (01-12)

%d day of the month as a decimal number (01-31)

%H hour (24-hour clock), as a decimal number (00-23)

%I hour (12-hour clock), as a decimal number (01-12)

%M minute, as a decimal number (00-59)

%S second, as a decimal number (00-59)

%P AM/PM designation for a 12-hour clock

%c date and time in the form: 01:35:56 PM Wednesday, March 27, 1996

%x date in the form Wednesday, March 27, 1996

%X time in the form 01:35:56 PM

%a abbreviated weekday name

%A full weekday name

%w weekday, as a decimal number (0 (Sunday)-6 (Saturday))

%j day of the year, as a decimal number (001-366)

%U week number of the year (with Sunday as the first day of the first week), as a decimal number

%W week number of the year (with Monday as the first day of the first week), as a decimal number (00-53)

%Z prints the time zone if it can be determined

%% the % character

Miscellaneous

GDL Reference Guide 613

Example:
dstr = ""
ch = OPEN ("DateTime", "", "%w/%m/%d/%Y, %H:%M%P")
n = INPUT (ch, "", "", dstr)
CLOSE (ch)
PRINT dstr !it prints 3/03/27/1996, 14:36 PM

Reading Information
n = INPUT (channel, "", "", datetimestr)
It reads a string type value which represents the date and/or time in the format given at the OPEN sequence. The second and third parameters
are unused (they can be empty strings or 0-s as well)
The return value is the number of successfully read values, in this case 1.
channel: channel value, used to identify the connection.
datetimestr: string type value

Closing Channel
CLOSE channel
Closes the channel identified by the channel value.

GDL FILE MANAGER I/O ADD-ON
The GDL File Manager In-Out Add-On allows you to scan a folder for the contained files/subfolders from a GDL script.
Specify the folder you would like to scan by using the OPEN command.
Get the first/next file/folder name in the specified folder by using the INPUT command.
Finish folder scanning by using the CLOSE command.

Specifying Folder
channel = OPEN (filter, filename, paramstring)
channel: folder id
filter: the internal name of the Add-On, in this case "FileMan"
filename: the name of folder to be scanned (OS dependent path) - folder id string (in DIALOG mode - see later)
paramstring: Add-on specific parameter. The parameters in paramString must be separated by commas (,).

Miscellaneous

GDL Reference Guide 614

1. parameter: FILES/FOLDERS: What would you like to search for?
2. parameter (optional): DIALOG: Indicates that the folder is given by a file id string instead of a file path. When this is
the case, at the first time (and each time when the corresponding file path seems to be invalid) the user will be faced a dialog box to set the
id string - file path correspondence, which will be stored.

Example: Opening the root directory of the C drive (on a PC) for file-scanning
folder = OPEN ("FileMan", "c:\", "FOLDERS")

Getting File/Folder Name
n = INPUT (channel, recordID, fieldID, var1 [, var2, ...])
channel: folder id (returned by the OPEN command)
recordID: 0 (reserved for further development)
fieldID: 0 (reserved for future development)
var1, ...: variable(s) to receive the file/folder name(s)
n: the number of successfully filled variables

Example: Fetching the next file name from the specified folder
n = INPUT (folder, 0, 0, fileName)
If it succeeds, n will be 1. If there are no more files/subfolders the variable n will be set to zero.

Finishing Folder Scanning
CLOSE (channel)
Closes the folder identified by the channel value.

Example: Listing a single folder
topFolder = open ("FileMan", "MyFavouriteFolder", "files, dialog")
y = 0
n = input (topFolder, 0, 0, fileName)
while n = 1 do
 text2 0, y, fileName
 y = y - 0.6
 n = input (topFolder, 0, 0, fileName)
endwhile
close (topFolder)

Miscellaneous

GDL Reference Guide 615

This code segment (as the 2D script section of an object, for example) lists the files in the folder specified by the MyFavouriteFolder identifier.
At first usage, the user will have to assign an existing folder to this identifier. Later, MyFavouriteFolder id will represent that folder.

GDL TEXT I/O ADD-ON
The GDL Text In/Out Add-On allows you to open external text files for reading/writing and to manipulate them by putting/getting values
from/to GDL scripts.
This Add-On interprets the strings on the parameter list of the OPEN, INPUT, OUTPUT commands from the GDL script.
The created files are placed in a subfolder of the application data folder if it is given by a relative path. The folder can contain subfolders where
the extension will look for existing files. It can read and write TEXT type files.

Opening File
channel = OPEN (filter, filename, paramstring)
Opens the file. If the file into which you want to write doesn’t exist, it creates the file. If a file to be read doesn’t exist, an error message is displayed.
Its return value is a positive integer that will identify the specific file. This value will be the file’s future reference number.
filter: the internal name of the Add-On, in this case "TEXT"
filename: the name of the file to be opened
paramstring: add-on specific parameter, contains separator characters and file opening mode parameters

The paramstring may contain the following:
SEPARATOR: after the keyword between apostrophes (') you can assign a character to use in the text file (for both writing and reading)
to separate columns. Special cases are the tabulator ('\t') and the new row ('\n') characters.
MODE: the mode of opening has to follow this keyword. There are only three modes of opening:
• RO (read only)
• WA (write only, append at the end of the file)
• WO (write only, overwrite) the data previously stored in the file will be lost!
A file cannot be open for reading and writing at the same time.
DIALOG: If this keyword is present, a dialog box will appear in which you can enter a file name.
FULLPATH: If this keyword is present, the file name will be interpreted as a full path name.
LIBRARY: If this keyword is present, the data file must be in the loaded library. Opening data file from the loaded library for reading is
possible from all scripts, but writing is only enabled in the parameter, user interface and property scripts.
Always put a comma (,) between the keywords.

Miscellaneous

GDL Reference Guide 616

NEWLINE: definition of new line character(s). Possible values:
• CR (Carriage return, 0x0D)
• LF (Line feed, 0x0A)
• CRLF (Carriage return + Line feed, 0x0D0x0A)
For Windows-like line ends use "NEWLINE = CRLF"
If you use keywords that don’t exist, if the separator characters given are wrong or if there is nothing in the parameter string, the extension
will use the default settings: "SEPARATOR = '\t', MODE = RO, NEWLINE = LF"

Example:
ch1 = OPEN ("TEXT", "file1", "SEPARATOR = ';', MODE = RO")
ch2 = OPEN ("TEXT", "file2", "")
ch3 = OPEN ("TEXT", "file3", "SEPARATOR = '\n', MODE = WO")

Reading Values
INPUT (channel, recordID, fieldID, var1 [, var2, ...])
It reads as many values from the given starting position of the file identified by the channel value as many parameters are given. In the parameter
list there has to be at least one value. The function puts the read values into the parameters in sequence. The values can be of numeric or string
type independently of the parameter type defined for them.
The return value is the number of successfully read values, in case of end of file (-1).
Both the row and the column numbers have to be positive integers, otherwise you will get an error message.
If the row or column numbers are incorrect, the input will not be carried out. (n = 0)
If the row and the column can be identified, as many values shall be input from the given starting position as many parameters are given, or if
there are more parameters than values, the parameters without corresponding values will be set to zero.
In case of empty columns (i.e. if there is nothing between the separator characters) the parameters will be set to zero.
channel: channel value, used to identify the connection.
recordID: the row number (numeric or string)
fieldID: the column number in the given row
var1, ...: variables to receive the read record items

Example:
nr = INPUT (ch1, 1, 1, v1, v2, v3) ! input of three values
! from the firstcolumn of the first row
PRINT nr, v1, v2, v3

Miscellaneous

GDL Reference Guide 617

Writing Values
OUTPUT channel, recordID, fieldID, expr1 [, expr2, ...]
Outputs as many values into the file identified by the channel value from the given position as many expressions are defined. There has to be
at least one expression. The types of the output values are the same as those of the expressions.
In case of a text extension, the OUTPUT will either (depending on the mode of opening) overwrite the file or add to the end of the file the
given expressions to consecutive positions using between them the separator characters defined when opening the file. In this case, the given
position is not interpreted.
Modifying data files loaded with the library is only enabled in the parameter, user interface and property scripts.
channel: channel value
recordID: The recordID is used to direct the new rows in the output

If the recordID is positive, the output values will be followed by a new row, otherwise the last value will be followed by a separator character.
fieldID: no role, its value is not used
expr1: values to output

Example:
string = "Date: 19.01.1996"
a = 1.5
OUTPUT ch2, 1, 0, string ! string followed by a new row
OUTPUT ch2, 0, 0, a, a + 1, a + 2! separator character after a + 2 ! without new row

Closing File
CLOSE channel
Closes the text file identified by the channel value.
channel: channel value

Example:
A GDL object that will simply copy the contents of the "f1" file both into the "f2" and the "f3" files, but will write all the values tabulated
in "f1" into a separate row in both "f2" and "f3".

Miscellaneous

GDL Reference Guide 618

ch1 = open ("TEXT", "f1", "mode = ro")
ch2 = open ("TEXT", "f2", "separator = '\n', mode = wo")
ch3 = open ("TEXT", "f3", "separator = '\n', mode = wo")
i = 1

1:
 n = input (ch1, i, 1, var1, var2, var3, var4)
 if n <> -1 then
 output ch2, 1, 0, var1, var2, var3, var4
 output ch3, 1, 0, var1, var2, var3, var4
 i = i + 1
 goto 1
 else
 goto "close all"
 endif

"close all":
 close ch1
 close ch2
 close ch3
 end

PROPERTY GDL ADD-ON
The purpose of this add-on is to make an ARCHICAD property database accessible from GDL scripts. You can open database tables and
query their contents, just like you would do it with SQL. You can query single records and multiple records (lists). Note that you cannot modify
the database, and you cannot append records to it.
For the detailed description of the property database please refer to the “ARCHICAD Calculation Guide” in the Help menu.

Open property database
OPEN ("PROP", "database set name", "[database files]")
Return value: channel number
Opens a communication channel to the given database files. The content of the database files are read into memory for faster access. As long
as it is open modifications to the property database will not be accessible from this add-on. This is usually not a problem though.
database set name: an arbitrary name that will identify a set of database files in subsequent OPEN calls.

Miscellaneous

GDL Reference Guide 619

database files: a list of text files that are part of the property database. This parameter is optional, if you have previously assigned
database set name to the files you would like to read. The order of the files is fixed: key file, component file, descriptor
file, unit file. You don’t need to give full paths, because ARCHICAD will look up these files for you in the active libraries. If you
use long filenames or names with spaces, put them between quotes (' or ").

Example 1:
channel = OPEN ("PROP", "sample",
 "'ArchiCAD_Library_KEY.txt', 'ArchiCAD_Library_COMP.txt',
 'ArchiCAD_Library_DESC.txt', 'ArchiCAD_Library_UNIT.txt'")
Opens a database that consists of the files above (those are the files of the ARCHICAD Property database), and names it "sample". Note that
inside the third parameter you must use a different quotation character (you can use " and ').

Example 2:
channel = OPEN ("PROP", "sample", "")
This command can be issued after explicitly opening the database files (like in example 1), but before closing it. This lets you use the explicit
command at one place in the Master_GDL script, and use the shorter version later.

Close property database
CLOSE (channel_number)
Return value: none
Closes the previously opened communication channel.

Input to property database
INPUT (channel_number, "query type", "field list", variable1 [, ...])
channel_number: a valid communication channel number given by a previous OPEN command.
query type: specifies the query you would like to execute. The add-on understands the following keywords:

• Single-record queries:
• KEY, <keycode> - query the record from the key database where <keycode> is the value of the keycode attribute. Valid fields:

KEYCODE, KEYNAME
• UNIT, <unitcode> - query the record from the unit database where <unitcode> is the value of the unit code attribute. Valid fields:

UNITCODE, UNITNAME, UNITFORMATSTR

Miscellaneous

GDL Reference Guide 620

• COMP, <keycode>, <code> - query the record from the unit database where <keycode> is the key code attribute value, and <code>
is the component code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY, QUANTITYSTR,
UNITCODE, UNITNAME, UNITFORMATSTR

• DESC, <keycode>, <code> - query the record from the unit database where <keycode> is the key code attribute value, and <code>
is the descriptor code attribute value. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES, FULLNAME

• Listing queries:
• KEYLIST - list all records in the key database. Valid fields: KEYCODE, KEYNAME
• UNITLIST - list all records in the unit database. Valid fields: UNITCODE, UNITNAME, UNITFORMATSTR
• COMPLIST[, <keycode>] - list all records in the component database, or if <keycode> is given, then only those records are listed whose

keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, QUANTITY, QUANTITYSTR, UNITCODE,
UNITNAME, UNITFORMATSTR

• DESCLIST[, keycode] - list all records in the descriptor database, or if <keycode> is given, then only those records are listed whose
keycode equals <keycode>. Valid fields: KEYCODE, KEYNAME, CODE, NAME, NUMOFLINES, FULLNAME

• COMPDESCLIST[, <keycode>] - list all records in the component and the descriptor database, or if <keycode> is given, then only those
records are listed whose keycode equals <keycode>. Valid fields: ISCOMP, KEYCODE, KEYNAME, CODE, NAME, QUANTITY,
QUANTITYSTR, UNITCODE, UNITNAME, UNITFORMATSTR, NUMOFLINES, FULLNAME
Use this query with care! If either field is not valid in a database (e.g. FULLNAME in the component database) it will be simply left
out from the resulting list (you should be aware of that)

field list: lists the database attributes whose values you would like to see in the output. If the output is a list, it will be sorted in the
order of the fields listed here.
The following fields can be used:
• KEYCODE - key code attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,

COMPDESCLIST
• KEYNAME - key name attribute. Type: string. Usable in queries: KEY, COMP, DESC, KEYLIST, COMPLIST, DESCLIST,

COMPDESCLIST.
• UNITCODE - unit code attribute. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST, COMPDESCLIST
• UNITNAME - unit name attribute. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST, COMPDESCLIST
• UNITFORMATSTR - GDL format string of the unit. Type: string. Usable in queries: UNIT, COMP, UNITLIST, COMPLIST,

COMPDESCLIST.
• CODE - component or descriptor code attribute (depends on the query). Type: string. Usable in queries: COMP, DESC, COMPLIST,

DESCLIST, COMPDESCLIST.

Miscellaneous

GDL Reference Guide 621

• NAME - name of component or the first line of a descriptor record. Type: string. Usable in queries: COMP, DESC, COMPLIST,
DESCLIST, COMPDESCLIST.

• QUANTITY - quantity of a component as a number (for calculations). Type: number. Usable in queries: COMP, COMPLIST,
COMPDESCLIST.

• QUANTITYSTR - quantity of a component in string format. Type: string. Usable in queries: COMP, COMPLIST, COMPDESCLIST.
• NUMOFLINES - number of lines in a descriptor record. Type: number. Usable in queries: DESC, DESCLIST.
• FULLNAME - the whole descriptor record. Type: string(s). Usable in queries: DESC, DESCLIST.
• ISCOMP - tells you whether the next record is a component or a descriptor. Type: number (1 if component, 0 if descriptor). Usable in

queries: COMPDESCLIST
variables: will hold the result of the query upon completion. You can list several variables if you know exactly how many you need (e.g.

with single queries) or you can specify a dynamic array. The records are listed sequentially.

Example 1:
INPUT (channel, "KEY, 001", "KEYNAME", keyname)
This is a simple query: the name of the key with "001" code is put into the keyname variable.

Example 2:
INPUT (channel, "DESC, 004, 10", "NUMOFLINES, FULLNAME", desc_txt)
The descriptor record with keycode "004" and code "10" is processed, the number of lines of the description text and the text itself is put
into the desc_txt array. The result is:
desc_txt[1] = <numoflines> (number)
desc_txt[2] = <first row of description> (string)
...
desc_txt[<numoflines+1>] = <last row of description>

Example 3:
INPUT (channel, "COMPLIST", "NAME, KEYNAME, QUANTITY", comp_list)
Create a component list, sort it by the name field, then by the keyname and finally by the quantity field and put it into the comp_list array.
The result is:
complist[1] = <name1> (string)
complist[2] = <keyname1> (string)
complist[3] = <quantity1> (number)

Miscellaneous

GDL Reference Guide 622

complist[4] = <name2> (string)
... etc.

Example 4:
INPUT (channel, "COMPDESCLIST, 005", "ISCOMP, KEYNAME, NAME, QUANTITY", x_list)
Creates a common component and descriptor list, which means that records from both tables are listed where <keycode> is "005". The output is:
x_list[1] = 0 (number, 0 –> it is a descriptor)
x_list[2] = <name1> (string –> descriptors do not have <keyname> field, so it is left out)
x_list[3] = 0 (number, descriptors do not have quantity field)
...
x_list[(n*2)-1] = 1 (number –> there were n-1 descriptors listed, now the components come)
x_list[n*2] = <keyname_n> (string) ... etc.

Output to property database
This command is not implemented in this add-on, since property databases are read-only.

GDL XML EXTENSION
This extension allows reading, writing and editing XML files. It implements a subset of the Document Object Model (DOM) interface. XML
is a text file that uses tags to structure data into a hierarchical system, similar to HTML. An XML document can be modeled by a hierarchical
tree structure whose nodes contain the data of the document. The following node types are known by the extension:
• Element: what is between a start-tag and an end-tag in the document, or for an empty-element it can be an empty-element tag. Elements have

a name, may have attributes, and usually but not necessarily have content. It means that element type nodes can have child nodes. Attributes
are held in an attribute list where each attribute has a different name and a text value.

• Text: a character sequence. It cannot have child nodes.
• Comment: text between the comment delimiters: <!-- the comment itself --> . In the text of the comment each '-' character must be followed

by a character different from '-'. It also means that the following is illegal: <!-- comment ---> . Comment type nodes cannot have child nodes.
• CDATASection: text between the CDATA section delimiters: <![CDATA[the text itself]]> . In a CDATA section characters that have special

meaning in an XML document need not (and must not) be escaped. The only markup recognized is the closing "]]>". CData section nodes
cannot have child nodes.

• Entity-reference: reference to a predefined entity. Such a node can have a read-only subtree and this subtree gives the value of the referenced
entity. During the parsing of the document it can be chosen that entity references are translated into text nodes.

Miscellaneous

GDL Reference Guide 623

On the top level it is obligatory to have exactly one element type node (the root), and there can be several comment type nodes, as well. The
document type node of the DOM interface is not available through the extension’s interface.

name value

Element name of the tag "" (empty string)

Text "#text" the text content of the node

Comment "#comment" the text content of the node

CDATASection "#cdata-section" the text content of the node

Entity-reference name of the referenced entity "" (empty string)

For each node in the tree there is a name and a value string associated whose meanings depend on the type of the node:

Element: ELEM

Text: TXT

Comment: CMT

CDATA section: CDATA

Entity reference: EREF

The success or error code of an OPEN, INPUT or OUTPUT command can be retrieved by the GetLastError instruction of the INPUT
command.

Opening an XML Document
channel = OPEN (filter, filename, parameter_string)
filter: file extension. This should be 'XML'.
filename: name and path of the file to open (or create), or an identifier name if the file is opened through a dialog box and the file’s

location is given by the user.
parameter_string: a sequence of character flags that determine the open-mode:
'r': open in read-only mode. In general only the INPUT command can be used.
'e': entity references are not translated into text nodes in the tree. Without this flag there are no entity-references in the document structure.
'v': validity check is performed during reading in and writing out. If a DTD exists in the document, the document’s structure must agree
with it. Without this flag a well-structured but invalid document can be read in and written out without error message.

Miscellaneous

GDL Reference Guide 624

'n': create a new file. If the file exists, the open will fail. (After the OPEN the CreateDocument instruction must be the first to execute.)
'w': overwrite file with empty document if it exists. If it doesn’t exist, a new file will be created. (After the OPEN the CreateDocument
instruction must be the first to execute.)
'd': the file is obtained from the user in a dialog box. In later runs it will be associated with the identifier given in the filename parameter
of the OPEN command. (If the identifier is already associated to a file, the dialog box will not be opened to the user.)
'f': the filename parameter contains a full path.
'l': the file is in the loaded library parts. Opening data file from the loaded library for reading is possible from all scripts, but writing is
only enabled in the parameter, user interface and property scripts.

channel: used to identify the connection in subsequent I/O commands.
If you want to open an existing XML file for modification, then none of the 'r', 'n' and 'w' flags must be set in the parameter string. Only one of
the 'd', 'f' and 'l' flags should be set. If none of these flags is set then filename is considered to be a path relative to the user’s documents folder.

Reading an XML Document
DOM is an object-oriented model that cannot be adapted to a BASIC-like language like GDL directly. To represent the nodes in the hierarchy
tree we define position descriptors. When we want to walk through the nodes of the tree, first we have to request a new position descriptor
from the extension. Originally a new descriptor points to the root element. The descriptor is in fact a 32 bit identification number whose value
has no interest for the GDL script. The position it refers to can be changed as we move from one node in the tree to another.
n = INPUT (ch, recordID, fieldID, var1, var2, ...)
ch: channel returned by the OPEN command.
recordID: instruction name plus parameters.
fieldID: usually a position descriptor.
var1, var2, ...: optional list of variables receiving returned data.
INPUT instructions:
• GetLastError: retrieve the result of the last operation

recordID: "GetLastError"
fieldID: ignored
return values:
var1: error code / ok
var2: the explanation text of error / ok

• NewPositionDesc: request for a new position descriptor

Miscellaneous

GDL Reference Guide 625

recordID: "NewPositionDesc"
fieldID: ignored
return value: var1: the new position descriptor (initially refers to the root)

• CopyPositionDesc: request for a new position descriptor whose starting node is taken from another descriptor.
recordID: "CopyPositionDesc"
fieldID: an existing position descriptor
return value: var1: the new position descriptor (initially refers to where the descriptor given in fieldID refers to)

• ReturnPositionDesc: when a position descriptor is no longer needed.
recordID: "ReturnPositionDesc"
fieldID: the position descriptor
var1: ignored
Call this instruction when a position descriptor received from the NewPositionDesc or CopyPositionDesc instructions is no longer used.

• MoveToNode: change the position of a descriptor. (and retrieve the data of the new node)
This instruction can be used for navigating in the tree hierarchy.
recordID: "MoveToNode searchmode nodename nodetype nodenumber"
fieldID: position descriptor
searchmode (or movemode): the nodename parameter must contain a path that determines an element or entity reference node in the xml
document.
To specify an exact path, the Path movemode should be used. After this movemode only the required path should be present.
The path is relative to the node given in fieldID. The delimiter is the ':' character (which is otherwise an accepted character in an element's
name so this doesn't work for all cases). The '..' string in the path means a step to the parent node. The starting node can be different from
an element or entity reference node, in which case the path must begin with '..' to step back. If there are several element nodes on the same
level with the same name then the first one is chosen.
Move-modes:
ToParent: moves to the parent of the node given in fieldID.
ToNextSibling: moves to the next node on the same level.
ToPrevSibling: moves to the previous node on the same level.
ToFirstChild: moves to the first descendant of the fieldID node.
ToLastChild: moves to the last descendant of the fieldID node.

Miscellaneous

GDL Reference Guide 626

Search-modes:
FromNextSibling: searching starts from the next node on the same level and it moves forward.
FromPrevSibling: searching starts from the node before fieldID and it moves backward on the same level.
FromFirstChild: searching starts from the first descendant of the fieldID node and moves forward.
FromLastChild: searching starts from the last descendant of the fieldID node and moves backward.
nodename: the searching considers those nodes only whose name or value matches nodename. The * and ? characters in nodename are
considered as wildcard characters. For element and entity reference type nodes the name is compared, while for text, comment and CDATA
section nodes the value is compared. Default value: *
nodetype: the searching considers those nodes only whose type is allowed by nodetype. The * means all types are allowed. Otherwise the
type keywords can be combined with the + character to form the nodetype (it must be one word without spaces, like TXT+CDATA.) The
default value is *
nodenumber: if there are several matching nodes, this gives the number of the searched node in the sequence of matching nodes. (Starts
from 1) Default value: 1
return values:
var1: name of the node
var2: value of the node
var3: type keyword of the node

Example:
We want to move backwards on the same level to the 2nd node that is an element or an entity reference and whose name starts with K:
n = INPUT (ch, "MoveToNode FromPrevSibling K* ELEM+EREF 2", posDesc, name, val, type)

• GetNodeData: retrieve the data of a given node.
recordID: "GetNodeData"
fieldID: the position descriptor
return values:
var1: name of the node
var2: value of the node
var3: type keyword of the node

• NumberofChildNodes: gives the number of child nodes of a given node

Miscellaneous

GDL Reference Guide 627

recordID: "NumberofChildNodes nodetype nodename"
The following optional parameters can narrow the set of child nodes considered:
nodetype: allowed node types as defined in the MoveToNode instruction
nodename: allowed node names or values as defined in the MoveToNode instruction
fieldID: position descriptor
return values:
var1: number of child nodes

• NumberofAttributes: returns the number of attributes of an element node.
recordID: "NumberofAttributes attrname"
attrname: if present, it can narrow the set of attributes considered as only those attributes will be counted whose names (and not the values)
match attrname. In attrname the * and ? characters are considered wildcard characters.
fieldID: position descriptor (must refer to an element node)
return values:
var1: number of attributes

• GetAttribute: return the data of an attribute of an element node
recordID: "GetAttribute attrname attrnumber"
fieldID: position descriptor (must refer to an element node)
optional parameters:
attrname: give the name of the attribute. The * and ? are considered wildcard characters. Default value: *
attrnumber: If several attribute matches attrname, attrnumber chooses the attribute in the sequence of matching attributes. (Counting starts
from 1.) Default value: 1
return values:
var1: value of the attribute
var2: name of the attribute

• Validate: check the validity of the document.
The validity is not checked during a document modification instruction. It is checked during writing back the file to disk if the 'v' flag was set
in the open-mode string. A validity check can be forced any time by the Validate instruction, however it can consume considerable amount
of time and memory so it is not advisable to do so after every modification.
recordID: "Validate"

Miscellaneous

GDL Reference Guide 628

fieldID: ignored
var1: ignored

Modifying an XML Document
OUTPUT ch, recordID, fieldID, var1, var2, ...
ch: channel returned by the OPEN command.
recordID: instruction name plus parameters.
fieldID: usually a position descriptor.
var1, var2, ...: additional input data.
OUTPUT instructions:
Most of the OUTPUT instructions are invalid for files opened in read-only mode.
This instruction can be called even if the file was opened in read-only mode. In this case after the execution the document loses the read-only
attribute, so it can be modified and saved to the new file location.
• CreateDocument:

recordID: "CreateDocument"
fieldID: ignored
var1: name of the document. This will be the tagname of the root element, as well.
CreateDocument is allowed only if the file was opened in new-file or overwrite mode. In these modes this instruction must be the first to
be executed in order to create the XML document.

• NewElement: insert a new element type node in the document
recordID: "NewElement insertpos"
fieldID: a position descriptor relative to which the new node is inserted
var1: name of the new element (element tag-name)
insertpos can be:
AsNextSibling: new element is inserted after the position given in fieldID
AsPrevSibling: new element is inserted before the position given in fieldID
AsFirstChild: new element is inserted as the first child of the node given in fieldID (which must be an element node)
AsLastChild: new element is inserted as the last child of the node given in fieldID (which must be an element node)

• NewText: insert a new text node in the document

Miscellaneous

GDL Reference Guide 629

recordID: "NewText insertpos"
fieldID: position descriptor
var1: text to be inserted
See also the NewElement.

• NewComment: insert a new comment node in the document
recordID: "NewComment insertpos"
fieldID: position descriptor
var1: text of the comment to be inserted
See also the NewElement.

• NewCDATASection: insert a new CDATA section node in the document
recordID: "NewCDATASection insertpos"
fieldID: position descriptor
var1: text of the CDATA section to be inserted
See also the NewElement.

• Copy: make a copy of a subtree of the document under some node
recordID: "Copy insertpos"
fieldID: position descriptor relative to which the subtree is inserted
var1: position descriptor giving the node of the subtree to be copied
insertpos: same as in the NewElement
The copied subtree remains unchanged. Position descriptors pointing to a certain node in the copied subtree will point to the same node
after the copy.

• Move: replace some subtree in the document to some other location
recordID: "Move insertpos"
fieldID: position descriptor relative to which the subtree is inserted
var1: position descriptor giving the node of the subtree to be moved
insertpos: same as in the NewElement
The original subtree is deleted. Position descriptors pointing to some node in the moved subtree will point to the same node in the new
position of the subtree.

• Delete: delete a node and its subtree from the document

Miscellaneous

GDL Reference Guide 630

recordID: "Delete"
fieldID: position descriptor giving the node to delete
var1: ignored
All position descriptors pointing to some node in the deleted subtree become invalid.

• SetNodeValue: change the value of a node
recordID: "SetNodeValue"
fieldID: position descriptor, it must refer to either a text, a comment or a CDATA section type node
var1: new text value of the node

• SetAttribute: change an attribute of an element node or create a new one
recordID: "SetAttribute"
fieldID: position descriptor, it must refer to an element type node
var1: name of the attribute
var2: text value of the attribute
If the element already has an attribute with this name then its value is changed, otherwise a new attribute is added to the element's list of
attributes.

• RemoveAttribute: removes an attribute of an element node
recordID: "RemoveAttribute"
fieldID: position descriptor, it must refer to an element type node
var1: name of the attribute to remove

• Flush: write the current document back to file
recordID: "Flush"
fieldID: ignored
var1: ignored
If the file was opened in validate mode, then only a valid document is saved.

• ChangeFileName: associate another file with the current document
recordID: "ChangeFileName"
fieldID: new file path

Miscellaneous

GDL Reference Guide 631

var1: gives how fieldID should be interpreted. If var1 is an empty string, fieldID contains a path relative to the user's documents folder.
'd' means the file's location is obtained from the user from a file dialog box (see open-mode flags in the section called “Opening an XML
Document”). 'l' means the file is taken from the loaded libraries. 'f' means fieldID contains a full path.

Table 14. Error codes and messages (possible return values of OPEN function)

0 "Ok"

-1 "Add-on Initialization Failed"

-2 "Not Enough Memory"

-3 "Wrong Parameter String"

-4 "File Dialog Error"

-5 "File Does Not Exist"

-6 "XML Parse Error"

-7 "File Operation Error"

-8 "File Already Exists"

-9 "This channel is not open"

-10 "Syntax Error"

-11 "Open Error"

-12 "Invalid Position Descriptor"

-13 "Invalid Node Type for this Operation"

-14 "No Such Node Found"

-15 "Internal Error"

-16 "Parameter Error"

-17 "No Such Attribute Found"

-18 "Invalid XML Document"

-19 "Unhandled Exception"

Miscellaneous

GDL Reference Guide 632

-20 "Read-Only Document"

-21 "CreateDocument Not Allowed"

-22 "Document Creation Failed"

-23 "Setting NodeValue Failed"

-24 "Move Not Allowed"

-25 "Delete Not Allowed"

-26 "SetAttribute Not Allowed"

-27 "Format File Error"

-28 "Insertion (or Copy) Not Allowed"

-29 "Node Creation Failed"

-30 "Bad String"

-31 "Invalid Name"

POLYGON OPERATIONS EXTENSION
This add-on calculates result polygons based on the input polygons and the operation that is carried out on them.
Compatibility: introduced in ARCHICAD 21: There are operations for polylines as well.
Input polygons are identified by a name when passed to the add-on and are stored in a previously defined container. Result polygons are
automatically named by the add-on and are stored in a second, target container. Input and result polygons are thus stored in different containers.
Multiple polygons, possibly with an even greater number of contours, can be created by a single operation. These will be administered as
individual polygons in the target container. As a result, these polygons can be accessed in subsequent polygon operations. The principle is the
same as with the Solid Geometry Commands (see in the section called “Solid Geometry Commands”). Input polygons must be contiguous.
A polygon is defined by several contours, each of which is an uninterrupted sequence of connected vertices. The first contour is the outer
boundary. The subsequent contours must all be inside the first, they may not overlap, and they create cutouts of the first polygon.
Polylines don't have to be closed, but can't have multiple contours.

Opening a channel
ch = INITADDONSCOPE ("PolyOperations", "", "")

Miscellaneous

GDL Reference Guide 633

Opens a channel. The return value is the ID of the opened channel.

Container management

CreateContainer
Creates a new container.
PREPAREFUNCTION ch, "CreateContainer", "myContainer", ""

DeleteContainer
Delete an existing container.
PREPAREFUNCTION ch, "DeleteContainer", "myContainer", ""

EmptyContainer
Emptying an existing container.
PREPAREFUNCTION ch, "EmptyContainer", "myContainer", ""

SetSourceContainer
Set container as source container.
PREPAREFUNCTION ch, "SetSourceContainer", "mySourceContainer", ""

SetDestinationContainer
Set container as destination container.
PREPAREFUNCTION ch, "SetDestinationContainer", "myDestinationContainer", ""

Polygon / polyline management
The geometry can be communicated in two data formats: arrays or dictionaries. Compatibility: introduced in ARCHICAD 23.
The same exact geometry can be stored/retrieved in both ways.

Array
The array format is three separate arrays (they can have any name, they are identified by their position in the function parameter list):

Miscellaneous

GDL Reference Guide 634

contourArray: Only needed for polygons, not polylines. An array which contains the index of the last vertex of each contour in vertArray.
Given with "Store", returned from "GetContourEnds".

vertArray: Array containing all vertices describing all contours of the polygon / polyline. Two-dimensional array to use with "Store" and
"StorePolyline", one-dimensional (flattened two-dimensional) array returned from "GetVertices" and "GetPolylineVertices".

inhEdgeInfosArray: Optional array containing information attached to edges, defined by the caller. It must contain the same number
of vertices as vertArray. Given with "Store" and "StorePolyline", returned from "GetInhEdgeInfos" and "GetPolylineInhEdgeInfos".

Dictionary
The dictionary format is more simple to handle (it can have any name, it is identified by its position in the function parameter list):
.isClosed: (boolean) 1 - polygon or closed polyline, 0 - open polyline (the last point given as an extra edge)
.useEdgeInfo: (boolean, optional) when set to 1, PolyOperations expects the .edgeInfo key, otherwise disregards it
.defaultInhEdgeInfo: (integer, optional) corresponds to the defaultInhEdgeInfo parameter of "Store"
.contour: (dictionary) contains data of the polygon contour, corresponding to vertArray
.contour.edges[n]: (array) contains an embedded dictionary for each edge of the polygon
.contour.edges[n].type: (integer) 0 - straight, 1 - curved (circular arc)
.contour.edges[n].begPoint: (dictionary) an embedded dictionary for the beginning point of the edge
.contour.edges[n].begPoint.x / .y: (float) coordinates
.contour.edges[n].arcAngle: (angle) central angle of the edge curve, positive counter-clockwise, negative clockwise (not set for

straight edges)
.contour.edges[n].edgeInfo: (integer, optional) information attached to the edge
.holes[m]: (array, optional) contains data of inner holes, similar to .contour, only set when hole(s) exist
Some global variables use a dictionary structure that is compatible with PolyOperations (eg. OPENING_SYMBOL_GEOMETRY.polygon2D)
The same data format can be used for "StoreDictPolygon" and "StoreDictPolyline".
Polylines never have .holes[], polygons are always .isClosed = 1

Store
Stores the polygon "poly1" with the given parameters in the actual source container.
PREPAREFUNCTION ch, "Store", "poly1", nVertices, nContours,
vertArray, contourArray [, defaultInhEdgeInfo, inhEdgeInfosArray]

Miscellaneous

GDL Reference Guide 635

poly1: name of the stored polygon
nVertices: number of vertices
nContours: number of contours
vertArray: Array containing exactly nVertices items that describes all contours of the polygon. Two dimension array of (x, y, angle) records

where x, y, and angle is real value. The angle parameter is the view-angle (deflection) in case of curved edges. This is a signed value, reflecting
the orientation. Zero value means straight edge.

contourArray: An array which contains the index of the last vertex of the i-th contour. It must have exactly nContours items.
defaultInhEdgeInfo: One piece of inherited edge information. To the brand new edges (not created with split) this information will

be attached in operations performed. This data helps tracing newly created edges after complex operations. (Optional)
inhEdgeInfosArray: Array containing information attached to edges. It must contain exactly nVertices integer type items. If an edge

splits into more than one new edge in an operation, this information will be inherited without change to all new edges created. Can be used
to store the side angles of a roof, for example. (Optional)

Remarks:
• Polygons can have holes and curved edges though these curved edges can be only circle-arcs.
• The polygon can link to additional data for every edge.
• The first vertex must be always repeated in the last for all contours. So in this representation, a triangle have four vertices, where the first

and the last vertex is identical.
• The first contour is the main contour, and it must contain the others.

StorePolyline
Stores the polyline "polyline1" with the given parameters in the actual source container.
PREPAREFUNCTION ch, "StorePolyline", "polyline1", nVertices,
vertArray, [, defaultInhEdgeInfo, inhEdgeInfosArray]
polyline1: name of the stored polyline
nVertices: number of vertices
vertArray: Array containing exactly nVertices items that describes the polyline. Two dimension array of (x, y, angle) records where x,

y, and angle is real value. The angle parameter is the view-angle (deflection) in case of curved edges. This is a signed value, reflecting the
orientation. Zero value means straight edge.

defaultInhEdgeInfo: One piece of inherited edge information. To the brand new edges (not created with split) this information will
be attached in operations performed. This data helps tracing newly created edges after complex operations. (Optional)

Miscellaneous

GDL Reference Guide 636

inhEdgeInfosArray: Array containing information attached to edges. It must contain exactly nVertices integer type items. If an edge
splits into more than one new edge in an operation, this information will be inherited without change to all new edges created. Can be used
to store the side angles of a roof, for example. (Optional)

Remarks:
• The polyline can link to additional data for every edge.
• To define a closed polyline, the last vertex coordinates has to be the same as the first. Open and closed polylines behave differently when

being offset or split.

StoreDictPolygon
Stores the polygon "poly1" described as a dictionary in the actual source container. Compatibility: introduced in ARCHICAD 23.
PREPAREFUNCTION ch, "StoreDictPolygon", "poly1", PolyOpPolygon
poly1: name of the stored polygon
PolyOpPolygon: polygon as dictionary

StoreDictPolyline
Stores the polyline "polyline1" described as a dictionary in the actual source container. Compatibility: introduced in ARCHICAD 23.
PREPAREFUNCTION ch, "StoreDictPolyline", "polyline1", PolyOpPolyline
polyline1: name of the stored polyline
PolyOpPolyline: polyline as dictionary

Dispose
Deletes the polygon / polyline "poly1" from the container "myContainer".
PREPAREFUNCTION ch, "Dispose", "poly1", "myContainer"

Polygon / polyline operation settings
These commands work the same regardless whether data was given in dictionary or array format.

HalfPlaneParams
Set the half plane in 2D to be used in the "PolyCut" operation.
PREPAREFUNCTION ch, "HalfPlaneParams", "", ca, cb, cc

Miscellaneous

GDL Reference Guide 637

Defining inequality for the half plane: ca * x + cb * y > cc.
ca: Coefficient of x
cb: Coefficient of y
cc: Constant

OffsetParams
Set the offset parameters used in "OffsetEdge", "ResizeContour" and "PolylineOffsetVectors" operations.
PREPAREFUNCTION ch, "OffsetParams", "", itemIdx, offsetValue
itemIdx: Index of the edge to be translated for "OffsetEdge" operation. Index of the resizable contour for "ResizeContour" operation. Always

1 for "PolylineOffsetVectors" operation.
offsetValue: Distance of the translation. Negative and positive offset values make the edge move inside and outside, respectively. If the

offset is big, the neighboring vertices can be cut out.

MultipleEdgeOffsetParams
Set the offset parameters used in "OffsetMultipleEdges" and "PolylineOffsetVectors" operations.
PREPAREFUNCTION ch, "MultipleEdgeOffsetParams", "", nOffset, offsetArray
nOffset: Number of edges to offset.
offsetArray: Array containing nOffset items that describe edges to offset. Two dimensional array of (edgeIndex, offsetValue) records,

where edgeIndex is 1-based index of the edge, offsetValue is the distance of translation. For open polylines, it is positive to the left, negative
to the right (viewed in the direction of the edge).

PolylineOffsetVectors
Set the end offset parameters used in "OffsetPolylineWithVectors" operation. "OffsetParams" or "MultipleEdgeOffsetParams" have to be set separately.
PREPAREFUNCTION ch, "PolylineOffsetVectors", "", sx, sy, ex, ey
sx, sy: Start vertex offset direction vector. (Compatibility: has to be a unit vector up till version ARCHICAD 21.)
ex, ey: End vertex offset direction vector. (Compatibility: has to be a unit vector up till version ARCHICAD 21.)

Polygon / polyline operations
These functions work the same regardless whether data was given in dictionary or array format.

Miscellaneous

GDL Reference Guide 638

In the following polygon operations the "poly1", "poly2" source polygons and "polyline1" source polyline are located in the source container.
The resulting polygons / polylines are stored in the destination container with a unique name started with "resPolygonID" or "resPolylineID",
where "ID" is a number. These names are generally returned in an array.

+ - /
Executes the "OP" operation with "poly1" and "poly2" polygons and puts the new values into the given parameters. The return value is the
number of the generated polygons
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "poly1 OP poly2", "", resPolyIDArray)
OP: can be:
+: Polygon addition
-: Polygon subtraction
/: Polygon intersection

resPolyIDArray: Array of resulting polygon identifiers.

ClipPolyline
Clip a polyline with a polygon
dim resPolyIDArray[]
nPline = CALLFUNCTION (ch, "ClipPolyline", "polyline1 poly1", resPolyIDArray)
polyline1: Name of the polyline in the source container.
poly1: Name of the clip polygon in the source container.
resPolyIDArray: Array of resulting polyline identifiers.

CopyPolygon
Copying a polygon / polyline from the source container to the destination container
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "CopyPolygon", "poly1", resPolyIDArray)

Regularize
Regularizing a polygon - Making it geometrically valid.
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "Regularize", "poly1", resPolyIDArray)

Miscellaneous

GDL Reference Guide 639

A polygon is valid if
• Its first boundary contains all the others
• Is oriented correctly (the main contour is a positively oriented curve, the rest is oriented negatively)
• Has no self-intersections
• Its area is not zero
• Has no zero length edges

PolyCut
Intersecting the polygon with a halfplane.
The halfplane must be set with a "HalfPlaneParams" command. The result will be regularized.
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "PolyCut", "poly1", resPolyIDArray)

OffsetEdge
Translating an edge of a polygon perpendicularly to its direction.
The edge index and translation offset must be set with an "OffsetParams" command. The result will be regularized.
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "OffsetEdge", "poly1", resPolyIDArray)

OffsetMultipleEdges
Translating multiple edges of a polygon perpendicularly to its direction.
The edge indices and translation offsets must be set with an "MultipleEdgeOffsetParams" command. The result will be regularized.
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "OffsetMultipleEdges", "poly1", resPolyIDArray)

OffsetPolyline
Translating all edges of a polyline perpendicularly
The translation offset must be set with an "OffsetParams" command.
dim resPolyIDArray[]
nPline = CALLFUNCTION (ch, "OffsetPolyline", "polyline1", resPolyIDArray)

Miscellaneous

GDL Reference Guide 640

OffsetPolylineWithVectors
Translating all edges of an open polyline perpendicularly, and moving the endpoints along a vector
The translation vectors and offset must be set with "PolylineOffsetVectors" and "OffsetParams" commands.
dim resPolyIDArray[]
nPline = CALLFUNCTION (ch, "OffsetPolylineWithVectors", "polyline1", resPolyIDArray)
Gives Input argument error for closed polylines

ResizeContour
Enlarges or shrinks a contour of a polygon.
The contour index and translation offset must be set with an "OffsetParams" command. The result will be regularized.
dim resPolyIDArray[]
nPgon = CALLFUNCTION (ch, "ResizeContour", "poly1", resPolyIDArray)

CentreOfGravity
Computes the centre of gravity of a polygon. Compatibility: introduced in ARCHICAD 22.
n = CALLFUNCTION (ch, "CentreOfGravity", "poly1", x, y)
Returned values:
n: 1 on success, 0 if the centre of gravity is not well-defined, eg. the polygon was self-intersecting.
x, y: The coordinates of the centre of gravity.

Get resulting polygons / polylines

Array

GetSourcePolygons, GetSourcePolylines
Getting all polygon / polyline names from the actual source container.
dim resPolyIDArray[], resPolylineIDArray[]
nPgon = CALLFUNCTION (ch, "GetSourcePolygons", "", resPolyIDArray
nPline = CALLFUNCTION (ch, "GetSourcePolylines", "", resPolylineIDArray

GetDestinationPolygons, GetDestinationPolylines
Getting all polygon / polyline names from the actual destination container.

Miscellaneous

GDL Reference Guide 641

dim resPolyIDArray[], resPolylineIDArray[]
nPgon = CALLFUNCTION (ch, "GetDestinationPolygons", "", resPolyIDArray)
nPline = CALLFUNCTION (ch, "GetDestinationPolylines", "", resPolylineIDArray

GetVertices, GetPolylineVertices
Getting the resulting polygon / polyline vertices after any polygon / polyline operation call.
The polygon / polyline with name "polygonID" or "polylineID" is located in the destination container.
dim resVertices[], resPolylineVertices[]
nVertices = CALLFUNCTION (ch, "GetVertices", polygonID, resVertices)
nVertices = CALLFUNCTION (ch, "GetPolylineVertices", polylineID, resPolylineVertices)

GetContourEnds
Getting the resulting polygon contour end indices after any polygon operation call.
The polygon with name "polygonID" is located in the destination container.
dim contArr[]
nContours = CALLFUNCTION (ch, "GetContourEnds", polygonID, contArr)

GetInhEdgeInfos, GetPolylineInhEdgeInfos
Getting the resulting polygon contour / polyline information after any polygon / polyline operation call.
dim inhEdgeInfosArr[], polylineInhEdgeInfosArr[]
nEdgeInfos = CALLFUNCTION (ch, "GetInhEdgeInfos", polygonID, inhEdgeInfosArr)
nEdgeInfos = CALLFUNCTION (ch, "GetPolylineInhEdgeInfos",
 polylineID, polylineInhEdgeInfosArr)
The polygon / polyline with name "polygonID" or "polylineID" is located in the destination container.

Dictionary

GetSourceDictPolygon, GetSourceDictPolyline
Getting the source polygon / polyline as a dictionary. Compatibility: introduced in ARCHICAD 23.
The polygon / polyline with name "polygonID" or "polylineID" is located in the source container.
dict PolyOperationsPolygon, PolyOperationsPolyline
CALLFUNCTION (ch, "GetSourceDictPolygon", polygonID, PolyOperationsPolygon
CALLFUNCTION (ch, "GetSourceDictPolyline", polylineID, PolyOperationsPolyline

Miscellaneous

GDL Reference Guide 642

GetDestinationDictPolygon, GetDestinationDictPolyline
Getting the resulting polygon / polyline as a dictionary after any polygon / polyline operation call. Compatibility: introduced in ARCHICAD 23.
The polygon / polyline with name "polygonID" or "polylineID" is located in the destination container.
dict PolyOperationsPolygon, PolyOperationsPolyline
CALLFUNCTION (ch, "GetDestinationDictPolygon", polygonID, PolyOperationsPolygon)
CALLFUNCTION (ch, "GetDestinationDictPolyline", polylineID, PolyOperationsPolyline

Closing channel
Closes channel "ch". Deletes all of the stored polygons / polylines.
CLOSEADDONSCOPE (ch)

AUTOTEXT GUIDE
It’s not part of GDL itself. ARCHICAD will substitute all references to autotext fields in whatever GDL output it finds them. For example, if
you write <PROJECTSTATUS> in the parameter string of a text2 command, ARCHICAD will nicely replace it with the actual value. All this
is invisible to GDL – consequently the size and other attributes of the text are not measurable.

Project info keywords

PROJECTNAME
PROJECTNUMBER
PROJECTSTATUS
DATEOFISSUE
SITEFULLADDRESS

SITEADDRESS1
SITEADDRESS2
SITEADDRESS3
SITECITY
SITESTATE

SITEPOSTCODE
SITECOUNTRY
KEYWORDS
NOTES
ARCHITECTNAME

Miscellaneous

GDL Reference Guide 643

ARCHITECTPOSITION
CADTECHNICIAN
ARCHITECTCOMPANY
ARCHITECTFULLADDRESS
ARCHITECTADDRESS1

ARCHITECTADDRESS2
ARCHITECTADDRESS3
ARCHITECTCITY
ARCHITECTSTATE
ARCHITECTPOSTCODE

ARCHITECTCOUNTRY
ARCHITECTEMAIL
ARCHITECTPHONE
ARCHITECTFAX
ARCHITECTWEB

CLIENTNAME
CLIENTCOMPANY
CLIENTFULLADDRESS
CLIENTADDRESS1
CLIENTADDRESS2

CLIENTADDRESS3
CLIENTCITY
CLIENTSTATE
CLIENTPOSTCODE
CLIENTCOUNTRY

CLIENTEMAIL
CLIENTPHONE
CLIENTFAX

General

SHORTDATE

Miscellaneous

GDL Reference Guide 644

LONGDATE
TIME
FILENAME
FILEPATH
LASTSAVEDAT
LASTSAVEDBY

Layout autotexts

LAYOUTNAME
LAYOUTID
SUBSETNAME
SUBSETID
LAYOUTNUMBER
NUMOFLAYOUTS

Drawing autotexts

DRAWINGNAME
DRAWINGID
DRAWINGSCALE
ORIGINALSCALE
MAGNIFICATION
RENOVATIONFILTER

Reference type autotexts

LAYOUTNAME_R
LAYOUTID_R
SUBSETNAME_R
SUBSETID_R
DRAWINGNAME_R
DRAWINGID_R
DRAWINGSCALE_R
ORIGINALSCALE_R

Miscellaneous

GDL Reference Guide 645

MAGNIFICATION_R
FILENAME_R
FILEPATH_R
LAYOUTNUMBER_R
RENOVATIONFILTER_R

Marker type autotexts

MARKERSHEETNUMBER_R
MARKERDRAWINGNUMBER_R
MARKERSHEETNUMBER90_R
MARKERDRAWINGNUMBER90_R
MARKERSHEETNUMBER110_R
MARKERDRAWINGNUMBER110_R
BACKREFSHEETNUMBER_R

Change related autotexts

CHANGEID
CHANGEDESCRIPTION
REVISIONID
ISSUEID
ISSUEDESCRIPTION
ISSUEDATE
ISSUEDBY

Layout revision related autotexts

CURRENTREVISIONID
CURRENTISSUEID
CURRENTISSUEDESCRIPTION
CURRENTISSUEDATE
CURRENTISSUEDBY

Miscellaneous

GDL Reference Guide 646

NEW GDL FEATURES IN ARCHICAD 23
This section contains a fly-through of the new GDL features in ARCHICAD 23. For more details, tutorials and examples, visit GDL Center
[https://gdl.graphisoft.com].

New data type: dictionary
It is now possible to organize variables and parameters in a structured way, similar to many other languages. Dictionary data type – declared
with the keyword DICT – is a hierarchical collection of key-value pairs, where values can be other dictionaries or arrays too.

dict pointA, object
pointA.x = 1
pointA.y = 2
object.parts[3].edges[4].points[5] = pointA

This technique
• allows more readable and easier-to-maintain code
• can be used when more-than-two dimensional arrays would be needed
• reduces the number of variables needed for data exchange between ARCIHCAD and GDL objects (global variables and requests)
• reduces the number of parameters needed for data exchange between objects and macros

For more detailed info, see
• general syntax: Structured Types, DICT
• new functions: HASKEY, REMOVEKEY, PolyOperations functions
• new return type: VARTYPE
• globals using dict data type: OPENING_SYMBOL_GEOMETRY, OPENING_HEADERHEIGHT_VALUES,
OPENING_CENTERHEIGHT_VALUES, OPENING_SILLHEIGHT_VALUES, BEAM_SEGMENT_INFO, COLU_SEGMENT_INFO

• requests using dict data type: ”Component_Ids_Of_Parent”, “Component_Property_Values_Of_Parent”, “Property_Values_Of_Parent”
requests

New functions in PolyOperations add-on
Polygons/polylines can be given as a dictionary when communicating with the PolyOperations add-on. The general workflow is the same, storing/
reading can be simplified with these functions:
• StoreDictPolyline, StoreDictPolygon

https://gdl.graphisoft.com
https://gdl.graphisoft.com

Miscellaneous

GDL Reference Guide 647

• GetSourceDictPolyline, GetSourceDictPolygon
• GetDestinationDictPolyline, GetDestinationDictPolygon
The dictionary structure is the same as OPENING_SYMBOL_GEOMETRY.polygon2D. For more detailed info, see the Polygon Operations
Extension – Polygon / polyline management – the section called “Dictionary”.

New tool: Opening
The new opening tool’s 2D symbol is a GDL object. New symbols can be created using the subtype General GDL Object /
Documentation Element / Opening Symbol. An opening has two independent symbols, one shown when the opening is cut
(in a wall), the other when the opening is viewed (in a slab).
For more detailed info, see
• OPENING_SYMBOL_DISPLAY
• OPENING_SYMBOL_GEOMETRY
• OPENING_HEIGHT
• OPENING_WIDTH
• OPENING_HEADERHEIGHT_VALUES
• OPENING_CENTERHEIGHT_VALUES
• OPENING_SILLHEIGHT_VALUES
• GLOB_ELEM_TYPE

Updated tools: Beam and Column
With the updated Beam and Column tools it is possible to model multi-segmented elements. New labels can be chosen to be placed on the
elements or on segments, labels placed on segments receive a new GLOB_ELEM_TYPE. Most of the Beam and Column global variables are
avaliable for them, for availability details see Beam and Column global variables sections.
For more detailed info, see
• GLOB_ELEM_TYPE
• BEAM_SEGMENT_INDEX
• COLU_SEGMENT_INDEX
• BEAM_SEGMENT_INFO
• COLU_SEGMENT_INFO
• deprecated BEAM_CROSSSECTION_TYPE
• deprecated COLU_CROSSSECTION_TYPE

Miscellaneous

GDL Reference Guide 648

• deprecated ac_beam_crosssection_type
• deprecated ac_colu_crosssection_type

New Property requests
From ARCHICAD 23 Building Materials can have Properties and Classifications. The properties of the building materials are referred to as
component properties, as these properties belong to a component of the parent element. To display these properties new REQUESTs have
been introduced, which are available in Labels.
The input and output values of “Component_Ids_Of_Parent” and “Component_Property_Values_Of_Parent” requests are in the new
dictionary format, “Component_Properties_Of_Parent” has the same input and output data structure as the existing “Properties_Of_Parent”
request.
• “Component_Ids_Of_Parent”:

The available Building Material components in the parent element are identified by ARCHICAD, these IDs are available through the
“Component_Ids_Of_Parent” request.

• “Component_Property_Values_Of_Parent”:
To get the component property values of a parent element, the new "Component_Property_Values_Of_Parent” request can be used. It
returns the property values for a given component with any number of given property IDs.

• “Component_Properties_Of_Parent”:
For the Property selection on the User Interface the “Component_Properties_Of_Parent” has been introduced. This request is similar to
“Properties_Of_Parent”, except that it returns the available component properties of the parent element.

• “Property_Values_Of_Parent”:
A new request version of the “Property_Value_Of_Parent” request is available: “Property_Values_Of_Parent”. This request’s input and
output values are defined in the new dictionary format. Unlike “Property_Value_Of_Parent”, multiple property IDs can be defined as
dictionary keys, and multiple property values are returned.

Diagnostics mode
There is a new menu command that allows easier debugging where the GDL Debugger doesn’t work (complex tools like Curtain Wall, Stair,
Railing, Opening or debugging the contents of dictionaries). In the Library Developer Menu (it can be added via Work Environment / Menus)
the Library Part Diagnostics Mode menu item toggles the GLOB_DIAGNOSTICS_MODE global. It can be used to write conditional PRINT
commands and/or show hidden parameters on the UI that control the debugging process. The model is not automatically rebuilt after toggling
the menu, use Rebuild & Regenerate (Ctrl-Alt-Shift-R) to re-run the scripts.
Some ARCHICAD library parts use this feature, make sure to publish plans with the menu item turned off.

Miscellaneous

GDL Reference Guide 649

Command updates and extended versions
• TUBE and TUBE{2}:

Edge elimination (automatically hidden lines where two faces meet in the same plane with the same surface) is possible with these commands
too. Similarly to CPRISM_{3}, masks can be given for the whole body to control base, end, longitudinal and sectional edges.

• new COONS{2}:
It is possible to hide the boundaries of a COONS with a smooth surface.

• new RULEDSEGMENTED{2}:
It is possible to assign different materials to each segment and control the texture projection.

• “ASSOCLP_PARVALUE” request:
“ASSOCLP_PARVALUE” and “ASSOCLP_PARVALUE_WITH_DESCRIPTION” requests can handle parameters of profile type.

• Documentation:
We made some clarifications in the Reference Guide, it is recommendeed to look them up in case of using these:
• AC_LabelPointerLineType - type
• AC_LabelPointerPen - type
• AC_bLabelFrame - type
• ac_holeSideMaterial – previously existing, but undocumented
• ac_holeMaterialCurved – previously existing, but undocumented
• ac_beam_cut_linetype – previously existing, but undocumented
• ac_beam_overhead_linetype – previously documented, but non-existing
• VARTYPE – undocumented return value 3 for groups, new value 4 for dictionaries
• "CentreOfGravity" – previously existing, but undocumented PolyOperations function

IFC4
The IFC Add-on uses IFC4 standard instead of IFC 2×3. There are some minor changes in these these fix-named parameters:
• ifc_optype - new opening type for Doors
• ifc_optype, ifc_CapacityByWeight and ifc_CapacityByNumber - deprecated for Transport Elements
• ifc_subtype - new types for MEP elements
Details are listed in the the section called “Parameters of IFC add-on”.

Miscellaneous

GDL Reference Guide 650

New source format with LP_XMLConverter
The LP_XMLConverter tool can convert to and from a new type of source format called HSF. Library parts are stored in the same folder as
images, the xml source is split into smaller xml files and separate .gdl scripts.
LCF and GSM made from XML is fully compatible in ARCHICAD with one made from HSF, conversion between HSF and XML can be
done using LP_XMLConverter via the GSM format.
For more information about the LP_XMLConverter tool, check out the GDL Center Tips and Tricks [https://gdl.graphisoft.com/tips-and-tricks/
how-to-use-the-lp_xmlconverter-tool]

https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool
https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool
https://gdl.graphisoft.com/tips-and-tricks/how-to-use-the-lp_xmlconverter-tool

Index

GDL Reference Guide 651

INDEX

SYNTAX LISTING OF GDL COMMANDS

A
ABS (x)

ACS (x)

ADD dx, dy, dz

ADD2 x, y

ADDGROUP (g_expr1, g_expr2)

ADDGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

ADDGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

LIGHT red, green, blue, shadow,
 radius, alpha, beta, angle_falloff,
 distance1, distance2,
 distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
 name2 = value2, ...]

DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]

ADDX dx

ADDY dy

ADDZ dz

LOCK ALL ["name1" [, "name2", ..., "namen"]]

HIDEPARAMETER ALL ["name1" [, "name2", ..., "namen"]]

Index

GDL Reference Guide 652

CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ..., namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]

APPLICATION_QUERY (extension_name, parameter_string, variable1, variable2, ...)

ARC r, alpha, beta

ARC2 x, y, r, alpha, beta

ARMC r1, r2, l, h, d, alpha

ARME l, r1, r2, h, d

ASN (x)

ATN (x)

B
BASE

DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]

BEAM left_material, right_material, vertical_material,
 top_material, bottom_material,
 height,
 x1, x2, x3, x4,
 y1, y2, y3, y4, t,
 mask1, mask2, mask3, mask4

BINARY mode [, section, elementID]

BINARYPROP

BITSET (x, b [, expr])

BITTEST (x, b)

BLOCK a, b, c

Index

GDL Reference Guide 653

BODY status

BPRISM_ top_material, bottom_material, side_material,
 n, h, radius,
 x1, y1, s1,
 ...
 xn, yn, sn

BREAKPOINT expression

BRICK a, b, c

[SET] BUILDING_MATERIAL name_or_index
 [, cut_fill_pen [, cut_fill_bkgd_pen, [iOverrideFlag]]]

IND (BUILDING_MATERIAL, name_string)

BWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t, radius,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm

C
CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ..., namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ..., valuen or DEFAULT]

Index

GDL Reference Guide 654

CALL macro_name_string [, parameter_list]

CALLFUNCTION (channel, function_name, parameter, variable1 [, variable2, ...])

CEIL (x)

CIRCLE r

CIRCLE2 x, y, r

CLOSE channel

CLOSEADDONSCOPE channel

COMPONENT name, quantity, unit [, proportional_with, code, keycode, unitcode]

CONE h, r1, r2, alpha1, alpha2

COONS n, m, mask,
 x11, y11, z11, ..., x1n, y1n, z1n,
 x21, y21, z21, ..., x2n, y2n, z2n,
 x31, y31, z31, ..., x3m, y3m, z3m,
 x41, y41, z41, ..., x4m, y4m, z4m

COONS{2} n, m, mask,
 x11, y11, z11, ..., x1n, y1n, z1n,
 x21, y21, z21, ..., x2n, y2n, z2n,
 x31, y31, z31, ..., x3m, y3m, z3m,
 x41, y41, z41, ..., x4m, y4m, z4m

COOR wrap, vert1, vert2, vert3, vert4

COOR{2} wrap_method, wrap_flags, vert1, vert2, vert3, vert4

COOR{3} wrapping_method, wrap_flags,
 origin_X, origin_Y, origin_Z,
 endOfX_X, endOfX_Y, endOfX_Z,
 endOfY_X, endOfY_Y, endOfY_Z,
 endOfZ_X, endOfZ_Y, endOfZ_Z

Index

GDL Reference Guide 655

COS (x)

CPRISM_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, s1, ..., xn, yn, sn

CPRISM_{2} top_material, bottom_material, side_material,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

CPRISM_{3} top_material, bottom_material, side_material, mask,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

CPRISM_{4} top_material, bottom_material, side_material, mask,
 n, h,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

CREATEGROUPWITHMATERIAL (g_expr, repl_directive, pen, material)

CROOF_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1,
 ...
 xn, yn, alphan, sn

CROOF_{2} top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

Index

GDL Reference Guide 656

CROOF_{3} top_material, bottom_material, side_material, mask,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

CROOF_{4} top_material, bottom_material, side_material, mask,
 n, xb, yb, xe, ye, height, angle, thickness,
 x1, y1, alpha1, s1, mat1,
 ...
 xn, yn, alphan, sn, matn

CSLAB_ top_material, bottom_material, side_material,
 n, h,
 x1, y1, z1, s1, ..., xn, yn, zn, sn

CUTPLANE [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

CUTPLANE{2} angle [, status]
[statement1 ... statementn]
CUTEND

CUTPLANE{3} [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

CUTPOLY n,
 x1, y1, ..., xn, yn
 [, x, y, z]
[statement1
statement2
...
statementn]
CUTEND

Index

GDL Reference Guide 657

CUTPOLYA n, status, d,
 x1, y1, mask1, ..., xn, yn, maskn [,
 x, y, z]
[statement1
statement2
...
statementn]
CUTEND

CUTSHAPE d [, status]
[statement1 statement2 ... statementn]
CUTEND

CUTFORM n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1 [, mat1],
 ...
 xn, yn, maskn [, matn]

CUTFORM{2} n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1 [, mat1],
 ...
 xn, yn, maskn [, matn]

CUTPLANE [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

CUTPLANE{2} angle [, status]
[statement1 ... statementn]
CUTEND

CUTPLANE{3} [x [, y [, z [, side [, status]]]]]
[statement1 ... statementn]
CUTEND

Index

GDL Reference Guide 658

CUTPOLY n,
 x1, y1, ..., xn, yn
 [, x, y, z]
[statement1
statement2
...
statementn]
CUTEND

CUTPOLYA n, status, d,
 x1, y1, mask1, ..., xn, yn, maskn [,
 x, y, z]
[statement1
statement2
...
statementn]
CUTEND

CUTSHAPE d [, status]
[statement1 statement2 ... statementn]
CUTEND

CWALL_ left_material, right_material, side_material,
 height, x1, x2, x3, x4, t,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm

CYLIND h, r

Index

GDL Reference Guide 659

D
DATABASE_SET set_name [, descriptor_name, component_name, unit_name, key_name,
 criteria_name, list_set_name]

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ..., valuen or DEFAULT]

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ..., valuen or DEFAULT]

DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE FILL name [[,] FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing, angle, n,
 frequency1, direction1, offset_x1, offset_y1, m1,
 length11, ..., length1m,
 ...
 frequencyn, directionn, offset_xn,
 lengthn1, ..., lengthnm

DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing_x, spacing_y, angle, n,
 frequency1, directional_offset1, direction1,
 offset_x1, offset_y1, m1,
 length11, ..., length1m,
 ...
 frequencyn, directional_offsetn, directionn,
 offset_xn, offset_yn, mn,
 lengthn1, ..., lengthnm

Index

GDL Reference Guide 660

DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle

DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE LINE_TYPE name spacing, n,
 length1, ..., lengthn

DEFINE MATERIAL name type,
 surface_red, surface_green, surface_blue
 [, ambient_ce, diffuse_ce, specular_ce, transparent_ce,
 shining, transparency_attenuation
 [, specular_red, specular_green, specular_blue,
 emission_red, emission_green, emission_blue, emission_att]]
 [, fill_index [, fillcolor_index, texture_index]]

DEFINE MATERIAL name [,] BASED_ON orig_name [,] PARAMETERS name1 = expr1 [, ...]
 [[,] ADDITIONAL_DATA name1 = expr1 [, ...]]

DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE STYLE name font_family, size, anchor, face_code

DEFINE STYLE{2} name font_family, size, face_code

DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 spacingx1, spacingy1, spacingx2, spacingy2,
 angle, scaling1, scaling2, macro_name [,] PARAMETERS [name1
 = value1, ..., namen = valuen]

DEFINE SYMBOL_LINE name dash, gap, macro_name PARAMETERS [name1 = value1,
 ...
 namen = valuen]

DEFINE TEXTURE name expression, x, y, mask, angle

Index

GDL Reference Guide 661

DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage

DEL n [, begin_with]

DEL TOP

DELETED_PAR_VALUE ("oldparname", outputvalue)

DESCRIPTOR name [, code, keycode]

DICT variableName1[, variableName2...]

DIM var1[dim_1], var2[dim_1][dim_2], var3[],
 var4[][], var5[dim_1][],
 var5[][dim_2]

DO [statment1
 statement2
 ...
 statementn]
WHILE condition

WHILE condition DO
 [statement1
 statement2
 ...
 statementn]
ENDWHILE

DRAWINDEX number

DRAWING

DRAWING2 [expression]

DRAWING3 projection_code, angle, method

DRAWING3{2} projection_code, angle, method [, backgroundColor,

Index

GDL Reference Guide 662

 fillOrigoX, fillOrigoY, filldirection]

DRAWING3{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ..., namen=valuen]

E
EDGE vert1, vert2, pgon1, pgon2, status

ELBOW r1, alpha, r2

ELLIPS h, r

IF condition THEN statement [ELSE statement]

IF condition THEN
 [statement1
 statement2
 ...
 statementn]
[ELSE
 statementn+1
 statementn+2
 ...
 statementn+m]
ENDIF

END [v1, v2, ..., vn]

GROUP "name"
 [statement1 ... statementn]
ENDGROUP

IF condition THEN
 [statement1
 statement2
 ...

Index

GDL Reference Guide 663

 statementn]
[ELSE
 statementn+1
 statementn+2
 ...
 statementn+m]
ENDIF

PARAGRAPH name alignment, firstline_indent,
 left_indent, right_indent, line_spacing [,
 tab_position1, ...]
 [PEN index]
 [[SET] STYLE style1]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 [PEN index]
 [[SET] STYLE style2]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 ...
ENDPARAGRAPH

WHILE condition DO
 [statement1
 statement2
 ...
 statementn]
ENDWHILE

Index

GDL Reference Guide 664

EXIT [v1, v2, ..., vn]

EXP (x)

EXTRUDE n, dx, dy, dz, mask,
 x1, y1, s1,
 ...
 xn, yn, sn

EXTRUDEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

EXTRUDEDSHELL{2} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

EXTRUDEDSHELL{3} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,

Index

GDL Reference Guide 665

 n, status, offset, thickness, flipped, trimmingBody,
 x_tb, y_tb, x_te, y_te, topz, tangle,
 x_bb, y_bb, x_be, y_be, bottomz, bangle,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThicakenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

F
FILE_DEPENDENCE "name1" [, "name2", ...]

[SET] FILL name_string

[SET] FILL index

IND (FILL, name_string)

DEFINE FILL name [[,] FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing, angle, n,
 frequency1, direction1, offset_x1, offset_y1, m1,
 length11, ..., length1m,
 ...
 frequencyn, directionn, offset_xn,
 lengthn1, ..., lengthnm

DEFINE FILLA name [,] [FILLTYPES_MASK fill_types,]
 pattern1, pattern2, pattern3, pattern4,
 pattern5, pattern6, pattern7, pattern8,
 spacing_x, spacing_y, angle, n,
 frequency1, directional_offset1, direction1,
 offset_x1, offset_y1, m1,

Index

GDL Reference Guide 666

 length11, ..., length1m,
 ...
 frequencyn, directional_offsetn, directionn,
 offset_xn, offset_yn, mn,
 lengthn1, ..., lengthnm

DEFINE SYMBOL_FILL name [,][FILLTYPES_MASK fill_types,]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 spacingx1, spacingy1, spacingx2, spacingy2,
 angle, scaling1, scaling2, macro_name [,] PARAMETERS [name1
 = value1, ..., namen = valuen]

DEFINE SOLID_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE EMPTY_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE LINEAR_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE RADIAL_GRADIENT_FILL name [[,] FILLTYPES_MASK fill_types]

DEFINE TRANSLUCENT_FILL name [[,] FILLTYPES_MASK fill_types]
 pat1, pat2, pat3, pat4, pat5, pat6, pat7, pat8,
 percentage

DEFINE IMAGE_FILL name image_name [[,] FILLTYPES_MASK fill_types]
 part1, part2, part3, part4, part5, part6, part7, part8,
 image_vert_size, image_hor_size, image_mask, image_rotangle

VALUES "fill_parameter_name" [[,] FILLTYPES_MASK fill_types], value_definition1
 [, value_definition2, ...]

FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name

FPRISM_ top_material, bottom_material, side_material, hill_material,
 n, thickness, angle, hill_height,
 x1, y1, s1,
 ...
 xn, yn, sn

Index

GDL Reference Guide 667

FRA (x)

FRAGMENT2 fragment_index, use_current_attributes_flag

FRAGMENT2 ALL, use_current_attributes_flag

G
GET (n)

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

GOSUB label

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

GOTO label

GROUP "name"
 [statement1 ... statementn]
ENDGROUP

H
HASKEY (dictionary.key)

HIDEPARAMETER "name1" [, "name2", ..., "namen"]

HIDEPARAMETER ALL ["name1" [, "name2", ..., "namen"]]

HOTARC r, alpha, beta, unID

HOTARC2 x, y, r, startangle, endangle, unID

HOTLINE x1, y1, z1, x2, y2, z2, unID

HOTLINE2 x1, y1, x2, y2, unID

Index

GDL Reference Guide 668

HOTSPOT x, y, z [, unID [, paramReference [, flags [, displayParam [, customDescription]]]]]

HOTSPOT2 x, y [, unID [, paramReference [, flags [, displayParam [,
 "customDescription"]]]]]

HPRISM_ top_mat, bottom_mat, side_mat,
 hill_mat,
 n, thickness, angle, hill_height, status,
 x1, y1, s1,
 ...
 xn, yn, sn

I
IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

IF condition THEN statement [ELSE statement]

IF condition THEN
 [statement1
 statement2
 ...
 statementn]
[ELSE
 statementn+1
 statementn+2

Index

GDL Reference Guide 669

 ...
 statementn+m]
ENDIF

IND (MATERIAL, name_string)

IND (BUILDING_MATERIAL, name_string)

IND (FILL, name_string)

IND (LINE_TYPE, name_string)

IND (STYLE, name_string)

IND (TEXTURE, name_string)

IND (PROFILE_ATTR, name_string, index)

INITADDONSCOPE (extension, parameter_string1, parameter_string2)

INPUT (channel, recordID, fieldID, variable1 [, variable2, ...])

INT (x)

ISECTGROUP (g_expr1, g_expr2)

ISECTGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

ISECTGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

ISECTLINES (g_expr1, g_expr2)

K
KILLGROUP g_expr

L
[LET] varnam = n

LGT (x)

LIBRARYGLOBAL (object_name, parameter, value)

Index

GDL Reference Guide 670

LIGHT red, green, blue, shadow,
 radius, alpha, beta, angle_falloff,
 distance1, distance2,
 distance_falloff [[,] ADDITIONAL_DATA name1 = value1,
 name2 = value2, ...]

LINE2 x1, y1, x2, y2

LINE_PROPERTY expr

[SET] LINE_TYPE name_string

[SET] LINE_TYPE index

IND (LINE_TYPE, name_string)

LIN_ x1, y1, z1, x2, y2, z2

LOCK "name1" [, "name2", ..., "namen"]

LOCK ALL ["name1" [, "name2", ..., "namen"]]

LOG (x)

M
MASS top_material, bottom_material, side_material,
 n, m, mask, h,
 x1, y1, z1, s1,
 ...
 xn, yn, zn, sn,
 xn+1, yn+1, zn+1, sn+1,
 ...
 xn+m, yn+m, zn+m, sn+m

MASS{2} top_material, bottom_material, side_material,
 n, m, mask, h,
 x1, y1, z1, s1,
 ...

Index

GDL Reference Guide 671

 xn, yn, zn, sn,
 xn+1, yn+1, zn+1, sn+1,
 ...
 xn+m, yn+m, zn+m, sn+m

[SET] MATERIAL name_or_index

IND (MATERIAL, name_string)

MAX (x1, x2, ..., xn)

MESH a, b, m, n, mask,
 z11, z12, ..., z1m,
 z21, z22, ..., z2m,
 ...
 zn1, zn2, ..., znm

MIN (x1, x2, ..., xn)

MODEL WIRE

MODEL SURFACE

MODEL SOLID

MUL mx, my, mz

MUL2 x, y

MULX mx

MULY my

MULZ mz

N
NEWPARAMETER "name", "type" [, dim1 [, dim2]]

FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name

NOT (x)

Index

GDL Reference Guide 672

NSP

NTR ()

NURBSBODY shadowStatus, smoothnessMin, smoothnessMax

NURBSCURVE2D degree, nControlPoints,
 knot_1, knot_2, ..., knot_m,
 cPoint_1_x, cPoint_1_y, weight_1,
 cPoint_2_x, cPoint_2_y, weight_2,
 ...,
 cPoint_n_x, cPoint_n_y, weight_n

NURBSCURVE3D degree, nControlPoints,
 knot_1, knot_2, ..., knot_m,
 cPoint_1_x, cPoint_1_y, cPoint_1_z, weight_1,
 cPoint_2_x, cPoint_2_y, cPoint_2_z, weight_2,
 ...,
 cPoint_n_x, cPoint_n_y, cPoint_n_z, weight_n

NURBSEDGE vert1, vert2, curve, curveDomainBeg, curveDomainEnd, status, tolerance

NURBSFACE n, surface, tolerance,
 trim1, trim2, ..., trimn

NURBSFACE{2} n, surface, tolerance,
 wrap_method, wrap_flags,
 x1, y1, z1,
 x2, y2, z2,
 x3, y3, z3,
 x4, y4, z4,
 trim1, trim2, ..., trimn

NURBSLUMP n, face1, face2, ..., facen

NURBSSURFACE degree_u, degree_v, nu, nv,
 knot_u_1, knot_u_2, ..., knot_u_mu,
 knot_v_1, knot_v_2, ..., knot_v_mv,

Index

GDL Reference Guide 673

 cPoint_1_1_x, cPoint_1_1_y, cPoint_1_1_z, weight_1_1,
 cPoint_1_2_x, cPoint_1_2_y, cPoint_1_2_z, weight_1_2,
 ...,
 cPoint_1_nv_x, cPoint_1_nv_y, cPoint_1_nv_z, weight_1_nv,
 cPoint_2_1_x, cPoint_2_1_y, cPoint_2_1_z, weight_2_1,
 ...,
 cPoint_nu_nv_x, cPoint_nu_nv_y, cPoint_nu_nv_z, weight_nu_nv

NURBSTRIM edge, curve, curveDomainBeg, curveDomainEnd, tolerance

NURBSTRIMSINGULAR vertex, curve, curveDomainBeg, curveDomainEnd, tolerance

NURBSVERT x, y, z, hard, tolerance

O
OPEN (filter, filename, parameter_string)

OUTPUT channel, recordID, fieldID, expression1 [, expression2, ...]

P
PARAGRAPH name alignment, firstline_indent,
 left_indent, right_indent, line_spacing [,
 tab_position1, ...]
 [PEN index]
 [[SET] STYLE style1]
 [[SET] MATERIAL index]
 'string1'
 'string2'
 ...
 'string n'
 [PEN index]
 [[SET] STYLE style2]
 [[SET] MATERIAL index]
 'string1'

Index

GDL Reference Guide 674

 'string2'
 ...
 'string n'
 ...
ENDPARAGRAPH

PARAMETERS name1 = expression1 [,
 name2 = expression2, ...,
 namen = expressionn]

CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ..., namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]

 CALL macro_name_string [,]PARAMETERS
 value1 or DEFAULT [, ..., valuen or DEFAULT]

 PARVALUE_DESCRIPTION (parname [, ind1 [, ind2]])

PEN n

PGON n, vect, status, edge1, edge2, ..., edgen

PGON{2} n, vect, status, wrap, edge_or_wrap1, ..., edge_or_wrapn

PGON{3} n, vect, status, wrap_method, wrap_flags, edge_or_wrap1, ..., edge_or_wrapn

PI

PICTURE expression, a, b, mask

PICTURE2 expression, a, b, mask

PICTURE2{2} expression, a, b, mask

PIPG expression, a, b, mask, n, vect, status,
 edge1, edge2, ..., edgen

PLACEGROUP g_expr

Index

GDL Reference Guide 675

PLANE n, x1, y1, z1, ..., xn, yn, zn

PLANE_ n, x1, y1, z1, s1, ..., xn, yn, zn, sn

POINTCLOUD "data_file_name"

POLY n, x1, y1, ..., xn, yn

POLY2 n, frame_fill, x1, y1, ..., xn, yn

POLY2_ n, frame_fill, x1, y1, s1, ..., xn, yn, sn

POLY2_A n, frame_fill, fill_pen,
 x1, y1, s1, ..., xn, yn, sn

POLY2_B n, frame_fill,
 fill_pen, fill_background_pen,
 x1, y1, s1, ..., xn, yn, sn

POLY2_B{2} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1, ..., xn, yn, sn

POLY2_B{3} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy, x1, y1, s1, ..., xn, yn, sn

POLY2_B{4} n, frame_fill,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn

POLY2_B{5} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,

Index

GDL Reference Guide 676

 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, ..., xn, yn, sn

POLY2_B{6} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 gradientInnerRadius,
 x1, y1, s1, pen1, linetype1, ..., xn, yn, sn, penn, linetypen

POLYROOF defaultMat, k, m, n,
 offset, thickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

POLYROOF{2} defaultMat, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,

Index

GDL Reference Guide 677

 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

POLYROOF{3} defaultMat, mask, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,
 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

POLYROOF{4} defaultMat, mask, k, m, n,
 offset, thickness, totalThickness, applyContourInsidePivot,
 z_1, ..., z_k,
 pivotX_1, pivotY_1, pivotMask_1,
 roofAngle_11, gableOverhang_11, topMat_11, bottomMat_11,
 ...
 roofAngle_1k, gableOverhang_1k, topMat_1k, bottomMat_1k,
 ...
 pivotX_m, pivotY_m, pivotMask_m,

Index

GDL Reference Guide 678

 roofAngle_m1, gableOverhang_m1, topMat_m1, bottomMat_m1,
 ...
 roofAngle_mk, gableOverhang_mk, topMat_mk, bottomMat_mk,
 contourX_1, contourY_1, contourMask_1, edgeTrim_1, edgeAngle_1, edgeMat_1,
 ...
 contourX_n, contourY_n, contourMask_n, edgeTrim_n, edgeAngle_n, edgeMat_n

POLY_ n, x1, y1, s1, ..., xn, yn, sn

POSITION position_keyword

PREPAREFUNCTION channel, function_name, expression1 [, expression2, ...]

PRINT expression [, expression, ...]

PRISM n, h, x1, y1, ..., xn, yn

PRISM_ n, h, x1, y1, s1, ..., xn, yn, sn

VALUES "profile_parameter_name" [[,] PROFILETYPES_MASK profile_types], value_definition1
 [, value_definition2, ...]

IND (PROFILE_ATTR, name_string, index)

PROJECT2 projection_code, angle, method

PROJECT2{2} projection_code, angle, method [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection]

PROJECT2{3} projection_code, angle, method, parts [, backgroundColor,
 fillOrigoX, fillOrigoY, filldirection][[,]
 PARAMETERS name1=value1, ..., namen=valuen]

PROJECT2{4} projection_code, angle,
 useTransparency, statusParts,
 numCutplanes,
 cutplaneHeight1, ..., cutplaneHeightn,
 method1, parts1,
 cutFillIndex1,
 cutFillFgPen1, cutFillBgPen1,

Index

GDL Reference Guide 679

 cutFillOrigoX1, cutFillOrigoY1, cutFillDirection1,
 cutLinePen1, cutLineType1,
 projectedFillIndex1,
 projectedFillFgPen1, projectedFillBgPen1,
 projectedFillOrigoX1, projectedFillOrigoY1,
 projectedFillDirection1,
 projectedLinePen1, projectedLineType1,
 ...
 method(numCutplanes+1)), parts(numCutplanes+1),
 cutFillIndex(numCutplanes+1),
 cutFillFgPen(numCutplanes+1), cutFillBgPen(numCutplanes+1),
 cutFillOrigoX(numCutplanes+1), cutFillOrigoY(numCutplanes+1),
 cutFillDirection(numCutplanes+1),
 cutLinePen(numCutplanes+1), cutLineType(numCutplanes+1),
 projectedFillIndex(numCutplanes+1),
 projectedFillFgPen(numCutplanes+1), projectedFillBgPen(numCutplanes+1),
 projectedFillOrigoX(numCutplanes+1), projectedFillOrigoY(numCutplanes+1),
 projectedFillDirection(numCutplanes+1),
 projectedLinePen(numCutplanes+1), projectedLineType(numCutplanes+1)

PUT expression [, expression, ...]

PYRAMID n, h, mask, x1, y1, s1, ..., xn, yn, sn

R
RADIUS radius_min, radius_max

RECT a, b

RECT2 x1, y1, x2, y2

REF COMPONENT code [, keycode [, numeric_expression]]

REF DESCRIPTOR code [, keycode]

REMOVEKEY (dictionary.key)

Index

GDL Reference Guide 680

REPEAT [statement1
 statement2
 ...
 statementn]
UNTIL condition

REQ (parameter_string)

REQUEST (question_name, name | index, variable1 [, variable2, ...])

RESOL n

RETURN

CALL macro_name_string [,]
 PARAMETERS [ALL][name1=value1, ..., namen=valuen][[,]
 RETURNED_PARAMETERS r1, r2, ...]

REVOLVE n, alpha, mask, x1, y1, s1, ..., xn, yn, sn

REVOLVEDSHELL topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

REVOLVEDSHELLANGULAR topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,

Index

GDL Reference Guide 681

 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

REVOLVEDSHELLANGULAR{2} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

REVOLVEDSHELLANGULAR{3} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 segmentationType, nOfSegments,
 preThickenTran_11, preThickenTran_12, preThickenTran_13,
 preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23,
 preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33,
 preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

Index

GDL Reference Guide 682

REVOLVEDSHELL{2} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

REVOLVEDSHELL{3} topMat, bottomMat, sideMat_1, sideMat_2, sideMat_3, sideMat_4,
 defaultMat,
 n, status, offset, thickness, flipped, trimmingBody, alphaOffset, alpha,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 x_1, y_1, s_1,
 ...
 x_n, y_n, s_n

REVOLVE{2} n, alphaOffset, alpha, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn

REVOLVE{3} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn

REVOLVE{4} n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn

REVOLVE{5}n, alphaOffset, alpha, betaOffset, beta, mask, sideMat,
 x1, y1, s1, mat1, ..., xn, yn, sn, matn

RICHTEXT x, y,
 height, 0, textblock_name

RICHTEXT2 x, y, textblock_name

Index

GDL Reference Guide 683

RND (x)

ROT x, y, z, alpha

ROT2 alpha

ROTX alphax

ROTY alphay

ROTZ alphaz

ROUND_INT (x)

RULED n, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xn, yn, zn

RULEDSEGMENTED n, mask,
 x11, y11, z11, s1,..., x1n, y1n, z1n, sn,
 x21, y21, z21, ..., x2n, y2n, z2n

RULEDSEGMENTED{2} top_material, bottom_material,
 n, mask, textureMode,
 x11, y11, z11, s1, mat1..., x1n, y1n, z1n, sn, matn,
 x21, y21, z21, ..., x2n, y2n, z2n

RULEDSHELL topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,

Index

GDL Reference Guide 684

 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g

RULEDSHELL{2} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g, status,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,
 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g

RULEDSHELL{3} topMat, bottomMat,
 sideMat_1, sideMat_2, sideMat_3, sideMat_4, defaultMat,
 n, m, g, status,
 offset, thickness, flipped, trimmingBody,
 preThickenTran_11, preThickenTran_12, preThickenTran_13, preThickenTran_14,

Index

GDL Reference Guide 685

 preThickenTran_21, preThickenTran_22, preThickenTran_23, preThickenTran_24,
 preThickenTran_31, preThickenTran_32, preThickenTran_33, preThickenTran_34,
 firstpolyX_1, firstpolyY_1, firstpolyS_1,
 ...
 firstpolyX_n, firstpolyY_n, firstpolyS_n,
 secondpolyX_1, secondpolyY_1, secondpolyS_1,
 ...
 secondpolyX_m, secondpolyY_m, secondpolyS_m,
 profile2Tran_11, profile2Tran_12, profile2Tran_13, profile2Tran_14
 profile2Tran_21, profile2Tran_22, profile2Tran_23, profile2Tran_24
 profile2Tran_31, profile2Tran_32, profile2Tran_33, profile2Tran 34
 generatrixFirstIndex_1, generatrixSecondIndex_1,
 ...
 generatrixFirstIndex_g, generatrixSecondIndex_g

RULED{2} n, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xn, yn, zn

S
SECT_ATTRS fill, fill_background_pen,
 fill_pen, contour_pen [, line_type]

SECT_ATTRS{2} contour_pen [, line_type]

SECT_FILL fill, fill_background_pen,
 fill_pen, contour_pen

[SET] STYLE name_string

[SET] STYLE index

[SET] MATERIAL name_or_index

[SET] BUILDING_MATERIAL name_or_index
 [, cut_fill_pen [, cut_fill_bkgd_pen, [iOverrideFlag]]]

Index

GDL Reference Guide 686

[SET] FILL name_string

[SET] FILL index

[SET] LINE_TYPE name_string

[SET] LINE_TYPE index

SETMIGRATIONGUID guid

SGN (x)

SHADOW casting [, catching]

SIN (x)

SLAB n, h, x1, y1, z1, ..., xn, yn, zn

SLAB_ n, h, x1, y1, z1, s1, ..., xn, yn, zn, sn

MODEL SOLID

SPHERE r

SPLINE2 n, status, x1, y1,
 angle1, ..., xn, yn, anglen

SPLINE2A n, status, x1, y1, angle1, length_previous1, length_next1,
 ...
 xn, yn, anglen, length_previousn,
 length_nextn

SPLIT (string, format, variable1 [, variable2, ..., variablen])

SPRISM_ top_material, bottom_material, side_material,
 n, xb, yb, xe, ye, h, angle,
 x1, y1, s1,
 ...
 xn, yn, sn

SPRISM_{2} top_material, bottom_material, side_material,
 n,

Index

GDL Reference Guide 687

 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn

SPRISM_{3} top_material, bottom_material, side_material, mask,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn

SPRISM_{4} top_material, bottom_material, side_material, mask,
 n,
 xtb, ytb, xte, yte, topz, tangle,
 xbb, ybb, xbe, ybe, bottomz, bangle,
 x1, y1, s1, mat1,
 ...
 xn, yn, sn, matn

SQR (x)

FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name

STORED_PAR_VALUE ("oldparname", outputvalue)

STR (numeric_expression, length, fractions)

STR (format_string, numeric_expression)

STRLEN (string_expression)

STRSTR (string_expression1, string_expression2[, case_insensitivity])

STRSUB (string_expression, start_position, characters_number)

STRTOLOWER (string_expression)

Index

GDL Reference Guide 688

STRTOUPPER (string_expression)

STR{2} (format_string, numeric_expression [, extra_accuracy_string])

STW (string_expression)

[SET] STYLE name_string

[SET] STYLE index

IND (STYLE, name_string)

SUBGROUP (g_expr1, g_expr2)

SUBGROUP{2} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

SUBGROUP{3} (g_expr1, g_expr2, edgeColor, materialId, materialColor [, operationStatus])

MODEL SURFACE

SURFACE3D ()

SWEEP n, m, alpha, scale, mask,
 u1, v1, s1, ..., un, vn, sn,
 x1, y1, z1, ..., xm, ym, zm

SWEEPGROUP (g_expr, x, y, z)

SWEEPGROUP{2} (g_expr, x, y, z)

SWEEPGROUP{3} (g_expr, x, y, z, edgeColor, materialId, materialColor, method)

SWEEPGROUP{4} (g_expr, x, y, z, edgeColor, materialId, materialColor, method, status)

SWEEPGROUP{5} (g_expr, x, y, z, edgeColor, materialId, materialColor, method, status)

T
TAN (x)

TEVE x, y, z, u, v

TEXT d, 0, expression

Index

GDL Reference Guide 689

TEXT2 x, y, expression

TEXTBLOCK name width, anchor, angle, width_factor, charspace_factor, fixed_height,
 'string_expr1' [, 'string_expr2', ...]

TEXTBLOCK_ name width, anchor, angle, width_factor, charspace_factor, fixed_height, n,
 'expr_1' [, 'expr_2', ..., 'expr_n']

IND (TEXTURE, name_string)

IF condition THEN label
IF condition GOTO label
IF condition GOSUB label

IF condition THEN statement [ELSE statement]

IF condition THEN
 [statement1
 statement2
 ...
 statementn]
[ELSE
 statementn+1
 statementn+2
 ...
 statementn+m]
ENDIF

FOR variable_name = initial_value TO end_value [STEP step_value] NEXT variable_name

TOLER d

DEL TOP

TUBE n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,

Index

GDL Reference Guide 690

 x1, y1, z1, angle1,
 ...
 xm, ym, zm, anglem

TUBEA n, m, mask,
 u1, w1, s1,
 ...
 un, wn, sn,
 x1, y1, z1,
 ...
 xm, ym, zm

TUBE{2} top_material, bottom_material, cut_material,
 n, m, mask,
 u1, w1, s1, mat1,
 ...
 un, wn, sn, matn,
 x1, y1, z1, angle1,
 ...
 xm, ym, zm, anglem

U
UI_BUTTON type, text, x, y [, width, height, id [, url]]

UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI_COLORPICKER "redParamName", "greenParamName", "blueParamName", x0, y0 [, width [,
 height]]

UI_COLORPICKER{2} redParamName, greenParamName, blueParamName, x0, y0 [, width [, height]]

UI_CURRENT_PAGE index

UI_CUSTOM_POPUP_INFIELD "name", x, y, width, height,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,

Index

GDL Reference Guide 691

 value1, value2, valuesArray1, valuen, valuesArrayn

UI_CUSTOM_POPUP_INFIELD "name", x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]

UI_CUSTOM_POPUP_INFIELD{2} name, x, y, width, height,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

UI_CUSTOM_POPUP_INFIELD{2} name, x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]

 UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "name", childFlag, image, paramDesc,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
 extra parameters ...
 [UI_TOOLTIP tooltiptext]

 UI_CUSTOM_POPUP_LISTITEM{2} itemID, fieldID, name, childFlag, image, paramDesc,
 storeHiddenId, treeDepth,
 groupingMethod, selectedValDescription,
 value1, value2, valuesArray1, valuen, valuesArrayn

UI_CUSTOM_POPUP_LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
 extra parameters ...
 [UI_TOOLTIP tooltiptext]

UI_DIALOG title [, size_x, size_y]

UI_GROUPBOX text, x, y, width, height

Index

GDL Reference Guide 692

UI_INFIELD "name", x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...
 expression_imagen, textn]

UI_INFIELD "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{2} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1,
 ...
 expression_imagen, textn]

UI_INFIELD{2} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{3} name, x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1, value_definition1,
 ...
 [picIdxArray, textArray, valuesArray,
 ...]
 expression_imagen, textn, value_definitionn]

Index

GDL Reference Guide 693

UI_INFIELD{3} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{4} "name", x, y, width, height [,
 method, picture_name,
 images_number,
 rows_number, cell_x, cell_y,
 image_x, image_y,
 expression_image1, text1, value_definition1,
 ...
 [picIdxArray, textArray, valuesArray,
 ...]
 expression_imagen, textn, value_definitionn]

UI_INFIELD{4} "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description_header [,
 value_header]]]

UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description_header [,
 value_header]]]
 [UI_TOOLTIP tooltiptext]

UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]

UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]

UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]

UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]

UI_OUTFIELD expression, x, y [, width, height [, flags]]

UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]

UI_PAGE page_number [, parent_id, page_title [, image]]

Index

GDL Reference Guide 694

UI_PICT picture_reference, x, y [, width, height [, mask]]

UI_PICT expression, x, y [, width, height [, mask]] [UI_TOOLTIP tooltiptext]

UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]]

UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI_PICT_PUSHCHECKBUTTON name, text, picture_reference,
 frameFlag, x, y, width, height [UI_TOOLTIP tooltip]

UI_PICT_PUSHCHECKBUTTON{2} "name", text, picture_reference,
 frameFlag, x, y, width, height [UI_TOOLTIP tooltip]

UI_PICT_RADIOBUTTON name, value, text,
 picture_reference, x, y, width, height [UI_TOOLTIP tooltip]

UI_PICT_RADIOBUTTON{2} "name", value, text,
 picture_reference, x, y, width, height [UI_TOOLTIP tooltip]

UI_RADIOBUTTON name, value, text, x, y, width, height

UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]

UI_RADIOBUTTON{2} "name", value, text, x, y, width, height

UI_SEPARATOR x1, y1, x2, y2

UI_SLIDER "name", x0, y0, width, height [, nSegments [, sliderStyle]]

UI_SLIDER{2} name, x0, y0, width, height [, nSegments [, sliderStyle]]

UI_STYLE fontsize, face_code

UI_TEXTSTYLE_INFIELD name, faceCodeMask, x, y,
 buttonWidth, buttonHeight[, buttonOffsetX]

UI_TEXTSTYLE_INFIELD{2} "name", faceCodeMask, x, y,
 buttonWidth, buttonHeight [, buttonOffsetX]

Index

GDL Reference Guide 695

UI_BUTTON type, text, x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI_PICT_BUTTON type, text, picture_reference,
 x, y, width, height [, id [, url]] [UI_TOOLTIP tooltiptext]

UI_INFIELD "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{2} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{3} name, x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_INFIELD{4} "name", x, y, width, height [, extra parameters ...]
 [UI_TOOLTIP tooltiptext]

UI_CUSTOM_POPUP_INFIELD "name", x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]

UI_CUSTOM_POPUP_INFIELD{2} name, x, y, width, height , extra parameters ...
 [UI_TOOLTIP tooltiptext]

UI_RADIOBUTTON name, value, text, x, y, width, height [UI_TOOLTIP tooltiptext]

UI_OUTFIELD expression, x, y, width, height [, flags] [UI_TOOLTIP tooltiptext]

UI_PICT expression, x, y [, width, height [, mask]] [UI_TOOLTIP tooltiptext]

UI_LISTFIELD fieldID, x, y, width, height [, iconFlag [, description_header [,
 value_header]]]
 [UI_TOOLTIP tooltiptext]

UI_LISTITEM itemID, fieldID, "name" [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]

UI_LISTITEM{2} itemID, fieldID, name [, childFlag [, image [, paramDesc]]]
 [UI_TOOLTIP tooltiptext]

UI_CUSTOM_POPUP_LISTITEM itemID, fieldID, "name", childFlag , image , paramDesc,
 extra parameters ...

Index

GDL Reference Guide 696

 [UI_TOOLTIP tooltiptext]

UI_CUSTOM_POPUP_LISTITEM{2} itemID, fieldID, name, childFlag , image , paramDesc,
 extra parameters ...
 [UI_TOOLTIP tooltiptext]

REPEAT [statement1
 statement2
 ...
 statementn]
UNTIL condition

USE (n)

V
VALUES "parameter_name" [,]value_definition1 [, value_definition2, ...]

VALUES "fill_parameter_name" [[,] FILLTYPES_MASK fill_types], value_definition1
 [, value_definition2, ...]

VALUES "profile_parameter_name" [[,] PROFILETYPES_MASK profile_types], value_definition1
 [, value_definition2, ...]

VALUES{2} "parameter_name" [,]num_expression1, description1,
 [, num_expression2, description2, ...]

VALUES{2} "parameter_name" [,]num_values_array1, descriptions_array1
 [, num_values_array2, descriptions_array2, ...]

VARDIM1 (expr)

VARDIM2 (expr)

VARTYPE (expression)

VECT x, y, z

VERT x, y, z

VERT x, y, z, hard

Index

GDL Reference Guide 697

VOLUME3D ()

W
WALLARC2 x, y, r, alpha, beta

WALLBLOCK2 n, fill_control, fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1,
 ...
 xn, yn, sn

WALLBLOCK2{2} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,
 mxx, mxy, myx, myy,
 innerRadius,
 x1, y1, s1,
 ...
 xn, yn, sn

WALLHOLE n, status,
 x1, y1, mask1,
 ...
 xn, yn, maskn
 [, x, y, z]

WALLHOLE2 n, fill_control, fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY, fillAngle,
 x1, y1, s1,
 ...
 xn, yn, sn

WALLHOLE2{2} n, frame_fill, fillcategory, distortion_flags,
 fill_pen, fill_background_pen,
 fillOrigoX, fillOrigoY,

Index

GDL Reference Guide 698

 mxx, mxy, myx, myy,
 innerRadius,
 x1, y1, s1,
 ...
 xn, yn, sn

WALLLINE2 x1, y1, x2, y2

WALLNICHE n, method, status,
 rx, ry, rz, d,
 x1, y1, mask1, [mat1,]
 ...
 xn, yn, maskn[, matn]

DO [statment1
 statement2
 ...
 statementn]
WHILE condition

WHILE condition DO
 [statement1
 statement2
 ...
 statementn]
ENDWHILE

MODEL WIRE

X
XFORM newx_x, newy_x, newz_x, offset_x,
 newx_y, newy_y, newz_y, offset_y,
 newx_z, newy_z, newz_z, offset_z

XWALL_ left_material, right_material, vertical_material, horizontal_material,

Index

GDL Reference Guide 699

 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,
 status

XWALL_{2} left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 sill_depth1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 sill_depthn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,

Index

GDL Reference Guide 700

 status

XWALL_{3} left_material, right_material, vertical_material, horizontal_material,
 height, x1, x2, x3, x4,
 y1, y2, y3, y4,
 t, radius,
 log_height, log_offset,
 mask1, mask2, mask3, mask4,
 n,
 x_start1, y_low1, x_end1, y_high1,
 sill_depth1, frame_shown1,
 ...
 x_startn, y_lown, x_endn, y_highn,
 sill_depthn, frame_shownn,
 m,
 a1, b1, c1, d1,
 ...
 am, bm, cm, dm,
 status

	GDL Reference Guide
	Table of Contents
	General Overview
	Starting Out
	Scripting
	3D Generation

	GDL Syntax
	Rules of GDL Syntax
	Statements
	Line
	Label
	Characters
	Strings
	Identifiers
	Variables
	Parameters
	Simple Types
	Derived Types
	Structured Types
	Conventions used in this book

	Coordinate Transformations
	2D Transformations
	ADD2
	MUL2
	ROT2

	3D Transformations
	ADDX
	ADDY
	ADDZ
	ADD
	MULX
	MULY
	MULZ
	MUL
	ROTX
	ROTY
	ROTZ
	ROT
	XFORM

	Managing the Transformation Stack
	DEL
	DEL TOP
	NTR

	3D Shapes
	Basic Shapes
	BLOCK
	BRICK
	CYLIND
	SPHERE
	ELLIPS
	CONE
	PRISM
	PRISM_
	CPRISM_
	CPRISM_{2}
	CPRISM_{3}
	CPRISM_{4}
	BPRISM_
	FPRISM_
	HPRISM_
	SPRISM_
	SPRISM_{2}
	SPRISM_{3}
	SPRISM_{4}
	SLAB
	SLAB_
	CSLAB_
	CWALL_
	BWALL_
	XWALL_
	XWALL_{2}
	XWALL_{3}
	BEAM
	CROOF_
	CROOF_{2}
	CROOF_{3}
	CROOF_{4}
	MESH
	ARMC
	ARME
	ELBOW

	Planar Shapes in 3D
	HOTSPOT
	HOTLINE
	HOTARC
	LIN_
	RECT
	POLY
	POLY_
	PLANE
	PLANE_
	CIRCLE
	ARC

	Shapes Generated from Polylines
	EXTRUDE
	PYRAMID
	REVOLVE
	REVOLVE{2}
	REVOLVE{3}
	REVOLVE{4}
	REVOLVE{5}
	RULED
	RULED{2}
	RULEDSEGMENTED
	RULEDSEGMENTED{2}
	SWEEP
	TUBE
	TUBE{2}
	TUBEA
	COONS
	COONS{2}
	MASS
	MASS{2}
	POLYROOF
	POLYROOF{2}
	POLYROOF{3}
	POLYROOF{4}
	EXTRUDEDSHELL
	EXTRUDEDSHELL{2}
	EXTRUDEDSHELL{3}
	REVOLVEDSHELL
	REVOLVEDSHELL{2}
	REVOLVEDSHELL{3}
	REVOLVEDSHELLANGULAR
	REVOLVEDSHELLANGULAR{2}
	REVOLVEDSHELLANGULAR{3}
	RULEDSHELL
	RULEDSHELL{2}
	RULEDSHELL{3}

	Elements for Visualization
	LIGHT
	PICTURE

	3D Text Elements
	TEXT
	RICHTEXT

	Primitive Elements
	VERT
	VERT{2}
	TEVE
	VECT
	EDGE
	PGON
	PGON{2}
	PGON{3}
	PIPG
	COOR
	COOR{2}
	COOR{3}
	BODY
	BASE

	NURBS Primitive Elements
	NURBS Face trimming
	NURBS Geometry Commands
	NURBSCURVE2D
	NURBSCURVE3D
	NURBSSURFACE

	NURBS Topology Commands
	NURBSVERT
	NURBSEDGE
	NURBSTRIM
	NURBSTRIMSINGULAR
	NURBSFACE
	NURBSFACE{2}
	NURBSLUMP
	NURBSBODY

	Point Clouds
	POINTCLOUD

	Cutting in 3D
	CUTPLANE
	CUTPLANE{2}
	CUTPLANE{3}
	CUTPOLY
	CUTPOLYA
	CUTSHAPE
	CUTFORM
	CUTFORM{2}

	Solid Geometry Commands
	GROUP - ENDGROUP
	ADDGROUP
	SUBGROUP
	ISECTGROUP
	ISECTLINES
	PLACEGROUP
	KILLGROUP
	SWEEPGROUP
	CREATEGROUPWITHMATERIAL

	Binary 3D
	BINARY

	2D Shapes
	Drawing Elements
	HOTSPOT2
	HOTLINE2
	HOTARC2
	LINE2
	RECT2
	POLY2
	POLY2_
	POLY2_A
	POLY2_B
	POLY2_B{2}
	POLY2_B{3}
	POLY2_B{4}
	POLY2_B{5}
	POLY2_B{6}
	ARC2
	CIRCLE2
	SPLINE2
	SPLINE2A
	PICTURE2
	PICTURE2{2}

	Text Element
	TEXT2
	RICHTEXT2

	Binary 2D
	FRAGMENT2

	3D Projections in 2D
	PROJECT2
	PROJECT2{2}
	PROJECT2{3}
	PROJECT2{4}

	Drawings in the List
	DRAWING2
	DRAWING3
	DRAWING3{2}
	DRAWING3{3}

	Graphical Editing Using Hotspots
	Status Codes
	Status Code Syntax
	Additional Status Codes
	Previous part of the polyline: current position and tangent is defined
	Segment by absolute endpoint
	Segment by relative endpoint
	Segment by length and direction
	Tangential segment by length
	Set start point
	Close polyline
	Set tangent
	Set centerpoint
	Tangential arc to endpoint
	Tangential arc by radius and angle
	Arc using centerpoint and point on the final radius
	Arc using centerpoint and angle
	Full circle using centerpoint and radius

	Attributes
	Directives
	Directives for 3D and 2D Scripts
	LET
	RADIUS
	RESOL
	TOLER
	PEN
	LINE_PROPERTY
	[SET] STYLE

	Directives Used in 3D Scripts Only
	MODEL
	[SET] MATERIAL
	[SET] BUILDING_MATERIAL
	SECT_FILL
	SECT_ATTRS
	SECT_ATTRS{2}
	SHADOW

	Directives Used in 2D Scripts Only
	DRAWINDEX
	[SET] FILL
	[SET] LINE_TYPE

	Inline Attribute Definition
	Materials
	DEFINE MATERIAL
	DEFINE MATERIAL BASED_ON
	DEFINE TEXTURE

	Fills
	DEFINE FILL
	DEFINE FILLA
	DEFINE SYMBOL_FILL
	DEFINE SOLID_FILL
	DEFINE EMPTY_FILL
	DEFINE LINEAR_GRADIENT_FILL
	DEFINE RADIAL_GRADIENT_FILL
	DEFINE TRANSLUCENT_FILL
	DEFINE IMAGE_FILL

	Line Types
	DEFINE LINE_TYPE
	DEFINE SYMBOL_LINE

	Text Styles and Text Blocks
	DEFINE STYLE
	DEFINE STYLE{2}
	PARAGRAPH
	TEXTBLOCK
	TEXTBLOCK_

	Additional Data

	External file dependence
	FILE_DEPENDENCE

	Non-Geometric Scripts
	The Properties Script
	DATABASE_SET
	DESCRIPTOR
	REF DESCRIPTOR
	COMPONENT
	REF COMPONENT
	BINARYPROP
	SURFACE3D
	VOLUME3D
	POSITION
	DRAWING

	The Parameter Script
	VALUES
	VALUES{2}
	PARAMETERS
	LOCK
	HIDEPARAMETER

	The User Interface Script
	UI_DIALOG
	UI_PAGE
	UI_CURRENT_PAGE
	UI_BUTTON
	UI_PICT_BUTTON
	UI_SEPARATOR
	UI_GROUPBOX
	UI_PICT
	UI_STYLE
	UI_OUTFIELD
	UI_INFIELD
	UI_INFIELD{2}
	UI_INFIELD{3}
	UI_INFIELD{4}
	UI_CUSTOM_POPUP_INFIELD
	UI_CUSTOM_POPUP_INFIELD{2}
	UI_RADIOBUTTON
	UI_RADIOBUTTON{2}
	UI_PICT_RADIOBUTTON
	UI_PICT_RADIOBUTTON{2}
	UI_PICT_PUSHCHECKBUTTON
	UI_PICT_PUSHCHECKBUTTON{2}
	UI_TEXTSTYLE_INFIELD
	UI_TEXTSTYLE_INFIELD{2}
	UI_LISTFIELD
	UI_LISTITEM
	UI_LISTITEM{2}
	UI_CUSTOM_POPUP_LISTITEM
	UI_CUSTOM_POPUP_LISTITEM{2}
	UI_TOOLTIP
	UI_COLORPICKER
	UI_COLORPICKER{2}
	UI_SLIDER
	UI_SLIDER{2}

	The Forward Migration Script
	SETMIGRATIONGUID
	STORED_PAR_VALUE
	DELETED_PAR_VALUE

	The Backward Migration Script
	NEWPARAMETER

	Expressions and Functions
	Expressions
	DICT
	HASKEY
	REMOVEKEY
	DIM
	VARDIM1
	VARDIM2
	PARVALUE_DESCRIPTION

	Operators
	Arithmetical Operators
	Relational Operators
	Boolean Operators

	Functions
	Arithmetical Functions
	ABS
	CEIL
	INT
	FRA
	ROUND_INT
	SGN
	SQR

	Circular Functions
	ACS
	ASN
	ATN
	COS
	SIN
	TAN
	PI

	Transcendental Functions
	EXP
	LGT
	LOG

	Boolean Functions
	NOT

	Statistical Functions
	MIN
	MAX
	RND

	Bit Functions
	BITTEST
	BITSET

	Special Functions
	REQ
	REQUEST
	IND
	APPLICATION_QUERY
	LIBRARYGLOBAL

	String Functions
	STR
	STR{2}
	SPLIT
	STW
	STRLEN
	STRSTR
	STRSUB
	STRTOUPPER
	STRTOLOWER

	Control Statements
	Flow Control Statements
	FOR - TO - NEXT
	DO - WHILE
	WHILE - ENDWHILE
	REPEAT - UNTIL
	IF - GOTO
	IF - THEN - ELSE - ENDIF
	GOTO
	GOSUB
	RETURN
	END / EXIT
	BREAKPOINT

	Parameter Buffer Manipulation
	PUT
	GET
	USE
	NSP

	Macro Objects
	CALL

	Output in an Alert Box or Report Window
	PRINT

	File Operations
	OPEN
	INPUT
	VARTYPE
	OUTPUT
	CLOSE

	Using Deterministic Add-Ons
	INITADDONSCOPE
	PREPAREFUNCTION
	CALLFUNCTION
	CLOSEADDONSCOPE

	Miscellaneous
	Global Variables
	Script compatibility
	General environment information
	Story information
	Fly-through information
	General element parameters
	Object, Lamp, Door, Window, Wall End, Skylight parameters
	Object, Lamp, Door, Window, Wall End, Skylight, Curtain Wall Accessory parameters - available for listing and labels only
	Object, Lamp, Curtain Wall Accessory parameters - available for listing and labels only
	Opening parameters - available for listing and labels only
	Opening symbol parameters
	Window, Door and Wall End parameters
	Window, Door parameters - available for listing and labels only
	Lamp parameters - available for listing and labels only
	Marker parameters (Detail, Worksheet and Change Markers)
	Label parameters
	Wall parameters - available for Doors/Windows, listing and labels
	Wall parameters - available for listing and labels only
	Column parameters - available for listing and labels only
	Beam parameters - available for listing and labels only
	Slab parameters - available for listing and labels only
	Stair component parameters
	General stair variables - available for listing and labels
	General tread variables - available for listing and labels
	General riser variables - available for listing and labels
	Stair structure variables - available for listing and labels
	Stair Model View Options variables
	Stair 2D variables - available for floor plan representation only
	Stair grid variables
	Stair walking line symbol variables
	Stair break mark symbol variables
	Rise and Run description variables
	Stair draining 2D variables
	Stair structure 2D variables - Beam Structures
	Stair structure 2D variables - Monolithic Structure
	General 2D related variables

	Stair 3D variables - available for 3D representation (and connecting viewpoints) only
	Stair riser 3D variables
	Stair tread 2D-3D variables
	Stair structure variables

	Railing component parameters
	General railing variables - available for listing and labels
	Railing 3D variables
	Railing 2D variables

	Roof parameters - available for skylights, listing and labels
	Roof parameters - available for listing and labels only
	Fill parameters - available for listing and labels only
	Mesh parameters - available for listing and labels only
	Curtain Wall component parameters
	Curtain Wall parameters - available for listing and labels only
	Curtain Wall Frame parameters
	General Curtain Wall Frame variables - available for listing and labels only
	Curtain Wall Frame 3D variables

	Curtain Wall Panel variables
	Curtain Wall Panel parameters - available for listing and labels only
	Curtain Wall Junction parameters - available for listing and labels only
	Curtain Wall Accessory parameters - available for listing and labels only
	Migration parameters - available for migration scripts only
	Skylight parameters - available for listing and labels only
	Common Parameters for Shells and Roofs - available for listing and labels only
	Parameters for Morphs - available for listing and labels only
	Free users’ globals
	Example usage of global variables
	Deprecated Global Variables
	Deprecated Beam/Column Global Variables - available for listing and labels only
	Deprecated Label Global Variables
	Deprecated Curtain Wall Frame Global Variable - available for listing and labels only
	Old Global Variables

	Fix named optional parameters
	Parameters set by ARCHICAD
	Parameters for D/W attributes (available for Door, Window, Label, Listing)
	Floor plan display
	Direction
	Polygonal wall data
	Hole position
	Anchor data

	Parameters for WALL attributes (available for Door, Window, Label, Listing)
	Floor plan display
	Geometric data

	Parameters for COLUMN attributes (available for Label, Listing)
	Floor plan display
	Geometric data

	Parameters for BEAM attributes (available for Label, Listing)
	Floor plan display
	Geometric data

	Parameters for ROOF attributes (available for Label, Listing)
	Floor plan display

	Door/Window Marker attributes
	Detail/Worksheet Marker attributes
	Drawing Title attributes
	General running context
	Room parameters (available for Zone Stamps)
	Stair related parameters
	Flight / Landing Side Supported subtypes
	Riser Component subtype
	Stair 2D Component subtypes

	Parameters set/read by ARCHICAD
	Stair related parameters
	Structure subtype

	Parameters read by ARCHICAD
	Objects on Floor Plan
	Floor plan cutting of planar elements (i.e. skylight object, roof accessory objects)

	Door/Window objects
	Custom Component Template
	Stair related parameters
	Structure subtype
	Flight / Landing Under Supported subtype
	Flight Under Supported Cantilever / Landing Cantilever Supported subtypes

	Railing related parameters
	Railing Panel Component subtype
	Railing Rail Component subtype
	Railing Post Component subtype
	Railing End Component subtype

	Parameters for Curtain Wall
	Curtain Wall Parameters set and read by ARCHICAD
	Curtain Wall Frame parameters

	Curtain Wall Parameters set by ARCHICAD
	Curtain Wall Frame parameters
	Curtain Wall Panel parameters
	Curtain Wall Junction parameters
	Curtain Wall Accessory parameters
	Curtain Wall Frame Deprecated parameters

	Curtain Wall Parameters read by ARCHICAD
	Curtain Wall Panel and Frame parameters
	Curtain Wall Frame parameters
	Curtain wall panel parameters

	Parameters for add-ons
	Parameters of Skylight add-on
	Hole edge cut manipulation

	Parameters of Corner Window add-on
	Basic parameters of Corner Window objects
	Wall skins data parameters of Corner Window objects (available from ARCHICAD 12)

	Parameters of IFC add-on
	Common basic parameters of Door and Window objects
	Basic parameters of Door objects
	Basic parameters of Window objects
	Basic parameters of Transport Elements
	Basic parameters of Lift objects
	Basic parameters of Stair objects
	Basic parameters of MEP elements

	Parameters for Text Handling
	Parameters for Labels
	Parameters set or read by ARCHICAD
	Parameters read by ARCHICAD

	Deprecated parameters
	Deprecated Beam/Column parameters - available for listing and labels only
	Deprecated Zone Stamp parameters

	REQUEST Options
	Request Parameter Script Compatibility
	Details of Requests
	Profile Requests
	Deprecated Requests

	Application Query Options
	Document feature
	View direction

	MEP System
	Get MEP Systems
	Get Domain
	Get Contour Pen
	Get Fill Pen
	Get Background Pen
	Get Fill Type
	Get Center Line Type
	Get Center Line Pen
	Get System Material
	Get Insulation Material

	MEP Modeler
	Is Available

	MEP Connection Type
	Get Connection Types
	Get Connection Type Style

	MEP Flexible Segment
	Start Sectioning
	Add Control Point
	Add Direction and Width Vector
	End Sectioning

	MEP Bend
	Start Sectioning

	Parameter Script
	First Occasion in Progress

	Tags and Categories
	Get Parameter Folder Names
	Get Parameter Names
	Get Parameters

	Library manager
	Ies files
	User image files

	GDL Style Guide
	Introduction
	Naming Conventions
	General rules
	Variable names
	Capitalization

	Expressions
	Control flow statements
	if - else - endif
	for - next, do - while, while - endwhile, repeat - until

	Subroutines
	Writing comments
	Script header
	Section divide

	Script structure
	Bad Solution
	Good Solution

	Basic Technical Standards
	Introduction
	Library part format
	File extension
	Identification

	General scripting issues
	Numeric types - Precision
	Trigonometry functions
	GDL warnings
	Hotspot and Hotline IDs
	Purpose of hotspot/hotline/hotarc identification
	Problem of old-school hotspots/hotlines
	Correct hotspot/hotline/hotarc scripting

	Editable hotspots
	Editable hotspot example - Shoe / Shoe-rack

	GDL execution contexts
	Communicating values with ARCHICAD
	Information flow from ARCHICAD
	Global variables
	Fix named optional parameters
	Requests and Application Queries
	Information coming from the library part

	Model View Options, Library Global
	Internal Model View Options
	Library Global View Options

	Script type specific issues
	Master script
	2D script
	Execution context
	General recommendation
	Defining line and fill properties

	3D script
	Execution context
	General recommendation
	Modeling transparent bodies
	Texture mapping
	Picture elements
	Group operations

	Parameter script
	Execution context
	General recommendation
	Font type names
	Setting limits for array parameters

	User Interface script
	Execution context
	General recommendation
	Thumbnail control pictures
	Tab page handling
	Thumbnail controls with dynamic items
	Transparent UI pictures
	Font sizes on the UI

	Forward Migration script
	Execution context
	General recommendation

	Backward Migration script
	Execution context
	General recommendation

	Migration table

	Writing macros
	Macro return parameters
	Advanced parameters all
	Faster macro call
	Macro call example

	Background Conversion Issues
	Speed Issues
	Windows-Macintosh compatibility
	Changing platform with binary libraries
	Images and HDPI support in GDL

	Doors and Windows
	General Guidelines
	Positioning
	Creation of Door/Window Library Parts
	Rectangular Doors/Windows in Straight Walls
	3D Related Challenges
	Non-Rectangular Doors/Windows in Straight Walls
	WALLHOLE
	WALLNICHE

	Rectangular Doors/Windows in Curved Walls
	Non-Rectangular Doors/Windows in Curved Walls

	2D Related Challenges
	Cutting custom wall opening
	WALLHOLE2
	WALLHOLE2{2}

	Extending the wall polygon
	WALLBLOCK2
	WALLBLOCK2{2}
	WALLLINE2
	WALLARC2

	GDL Created from the Floor Plan
	Keywords
	Common Keywords
	Reserved Keywords
	3D Use Only
	2D Use Only
	2D and 3D Use
	Non-Geometric Scripts
	Properties Script
	Parameter Script
	Interface Script
	Forward and Backward Migration Scripts

	GDL Data I/O Add-On
	Description of Database
	Opening a Database
	Reading Values from Database
	Writing Values into Database
	Closing Database

	GDL Datetime Add-On
	Opening Channel
	Reading Information
	Closing Channel

	GDL File Manager I/O Add-On
	Specifying Folder
	Getting File/Folder Name
	Finishing Folder Scanning

	GDL Text I/O Add-On
	Opening File
	Reading Values
	Writing Values
	Closing File

	Property GDL Add-On
	Open property database
	Close property database
	Input to property database
	Output to property database

	GDL XML Extension
	Opening an XML Document
	Reading an XML Document
	Modifying an XML Document

	Polygon Operations Extension
	Opening a channel
	Container management
	CreateContainer
	DeleteContainer
	EmptyContainer
	SetSourceContainer
	SetDestinationContainer

	Polygon / polyline management
	Array
	Dictionary
	Store
	StorePolyline
	StoreDictPolygon
	StoreDictPolyline
	Dispose

	Polygon / polyline operation settings
	HalfPlaneParams
	OffsetParams
	MultipleEdgeOffsetParams
	PolylineOffsetVectors

	Polygon / polyline operations
	+ - /
	ClipPolyline
	CopyPolygon
	Regularize
	PolyCut
	OffsetEdge
	OffsetMultipleEdges
	OffsetPolyline
	OffsetPolylineWithVectors
	ResizeContour
	CentreOfGravity

	Get resulting polygons / polylines
	Array
	GetSourcePolygons, GetSourcePolylines
	GetDestinationPolygons, GetDestinationPolylines
	GetVertices, GetPolylineVertices
	GetContourEnds
	GetInhEdgeInfos, GetPolylineInhEdgeInfos

	Dictionary
	GetSourceDictPolygon, GetSourceDictPolyline
	GetDestinationDictPolygon, GetDestinationDictPolyline

	Closing channel

	Autotext Guide
	Project info keywords
	General
	Layout autotexts
	Drawing autotexts
	Reference type autotexts
	Marker type autotexts
	Change related autotexts
	Layout revision related autotexts

	New GDL Features in ARCHICAD 23
	New data type: dictionary
	New functions in PolyOperations add-on
	New tool: Opening
	Updated tools: Beam and Column
	New Property requests
	Diagnostics mode
	Command updates and extended versions
	IFC4
	New source format with LP_XMLConverter

	Index
	Syntax Listing of GDL Commands

